共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
以蚕丝氨基酸为炭前驱体和杂原子源,经过KOH活化制备了一系列多孔炭材料,经过扫描电镜和X射线衍射等方法对炭材料进行了结构表征;将其作为超级电容器电极材料,并对其电化学性能进行测试。结果表明,经过活化后的炭材料具有无定形结构;在最佳条件下制备的炭材料SA-3具有较高的比电容,在电流密度1 A·g^(-1)时比电容高达230 F·g^(-1),经过5 000次充放电循环测试后电容仍能保持99%以上,交流阻抗结果显示炭材料具有较小的内阻,意味着在超级电容器中的应用具有良好的电荷存储潜力。 相似文献
4.
5.
以法国梧桐絮为原料、KOH为活化剂,通过碳化制备多孔纤维碳材料,并在此基础上组装了超级电容器器件。通过SEM、EDS、XRD、Raman、FTIR、BET等对制备的多孔纤维碳材料进行表征,并研究了多孔纤维碳材料电极的电化学性能。结果表明:在扫描速率为50 mV·s~(-1)时,800℃下碳化制备的梧桐絮多孔纤维碳材料电极的比电容可以达到236 F·g~(-1);所组装电极在循环10 000次后,比电容仍维持原来的99.8%,表明梧桐絮多孔纤维碳材料在超级电容器领域有巨大的应用潜力。 相似文献
6.
7.
能源消费增加促使绿色能源开发成为趋势,同时推动能源存储系统快速发展,超级电容器以高功率密度和长循环寿命的优势得到广泛关注,其中电容炭材料逐渐成为研究热点。用来源广泛、有可再生性、价格低廉、绿色环保的生物质制备超级电容器用多孔炭材料,在开发绿色能源的同时解决了能源存储问题。多孔炭材料结构调控与性能完善是提高超级电容器性能的重要途径之一。综述了生物质衍生多孔炭材料及其在超级电容器领域的应用,按原料来源(植物、动物和微生物)及材料维度(0D、1D、2D和3D)的分类体系,多孔炭材料制备方法及技术现状。将多孔炭的制备分为炭化和活化,简述了炭化与活化机理、活化方式选择和常见活化剂特性,但生物质衍生多孔炭材料制备过程中影响因素多,且性能不及传统煤基碳材料,需进行多方面设计优化,包括选择生物质前驱体、合理使用炭化技术、调控活化过程各影响因素和选择改性过程中掺杂物等。基于在超级电容器领域的应用需求,重点探讨生物质多孔炭材料优化方式,包括孔结构调控、表面元素掺杂及与石墨烯复合形成新型炭材料等。梳理多孔炭材料用于超级电容器中时的难题与重点,通过寻找多孔炭材料在高比表面积、均匀孔隙分布和高导电性3方面的最优... 相似文献
8.
碳(炭)材料与超级电容器 总被引:4,自引:0,他引:4
贺福 《高科技纤维与应用》2005,30(3):13-19
多孔碳(炭)材料是用来制造超级电容器电极的理想材料之一.特别是中孔(≥nm)丰富的多孔碳(炭)材料,最适合制造超级电容器的电极. 相似文献
9.
10.
11.
塑料制品的过度使用,导致了严重的环境问题。将废旧塑料回收并转化为高附加值的碳材料并用于超级电容器等储能装置有着重要的意义,能够有效地降低环境污染并节约能源。本文首先对超级电容器的应用情况和塑料的使用以及回收处理现状进行了简单叙述,介绍了常见的废弃塑料处理方法、超级电容器的储能特点以及利用废弃塑料制备超级电容器碳材料的潜在价值;接着介绍了多孔碳电极材料的制备方法,对不同的制备方法的具体要求及其优缺点进行了简单分析;随后介绍了几种生活中常见的塑料,按照这些塑料的种类,分别对这些常见塑料回收用作超级电容器碳材料的研究现状进行了详细概述;最后对目前的研究现状进行总结,并对未来的研究方向进行展望。将废弃塑料回收并转化为超级电容器用活性碳材料,是一种新型的废弃塑料回收再利用的有效手段,能够有效地解决白色污染问题。 相似文献
12.
13.
14.
15.
16.
17.
18.
超级电容器具有功率高,使用寿命长,无污染等优点,具有广阔的应用前景和巨大的经济价值。电极材料是决定超级电容器性能的关键因素,因而备受关注。主要论述了应用于超级电容器的多种金属氧化物电极材料的研究进展。 相似文献
19.