首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
为了提高列车车轴的使用寿命,研究分析了不同强化处理后试样的表面形貌及其粗糙度、表层组织结构、表面硬度及其深度和表面残余应力,探索了滚压处理和不同载荷超声滚压处理对25CrMo4车轴钢表面强化特征的影响规律。结果表明:与磨削试样相比,滚压和超声滚压处理均改善了试样的表面粗糙度,其中低载荷超声滚压试样的表面粗糙度最低,达到了0.2μm;高载荷超声滚压试样的表层获得的塑性变形层最深;高载荷超声滚压试样的表面硬度值最大,达到了370 HV0.1,并形成了深度为150μm左右的硬化层;滚压试样和超声滚压试样表面均产生了较高的残余压应力。滚压和超声滚压处理使25CrMo4车轴钢表面硬度及硬化层深度的增加、产生较高的残余压应力和表面粗糙度的降低均会对其疲劳性能的提高产生有利的影响,特别是超声滚压处理的效果更佳。但过高的载荷会使车轴钢的表面粗糙度升高,从而对其疲劳性能的提高产生不利的影响。  相似文献   

2.
采用自制的基于普通车床CA6140的螺纹根部滚压强化装置对45钢螺纹试样进行滚压强化工艺处理。使用三维形貌测量仪、显微硬度计、X射线残余应力检测仪、超景深显微镜等检测设备,对滚压完成后的螺纹根部表面粗糙度、表层显微硬度、残余应力,表层显微组织等表面完整性参数进行检测。通过进行单因素试验,探究了螺纹根部滚压强化工艺参数对表面完整性的影响。45钢螺纹试样经过滚压强化工艺后,其螺纹根部的表面粗糙度Sa由1.71μm减小到0.874μm;螺纹根部形成了明显的晶粒细化层,深度达到了120μm;显微硬度由199.3 HV增加到379.5 HV,硬化程度N=90.4%;表层残余应力呈勺型分布,残余应力在距离表面105μm处达到峰值,为-542 MPa,残余压应力层深度可达700μm。研究结果表明:滚压强化技术可以显著提高螺纹根部的表面完整性,且滚压深度这一工艺参数对其的影响最为显著。  相似文献   

3.
对车削加工后的EA4T车轴进行打磨、滚压和超声滚压等工艺的表面强化处理,测量了经过不同工艺处理后车轴圆弧处的表面粗糙度、表面残余应力和表层硬度,对比观察了不同工艺处理后车轴的表面形貌和表层微观组织。结果表明:超声滚压处理的车轴圆弧表面光洁度最好,粗糙度值低至0.074μm;车轴圆弧处车削加工后表面轴向和周向残余应力都为拉应力,经过打磨、滚压和超声滚压处理后都转变为压应力,超声滚压处理后轴向残余压应力达到-770MPa;超声滚压处理车轴的表面硬度值最大,硬化层深度也最深;超声滚压处理后车轴表层微观组织最均匀,且细晶层的厚度最大。  相似文献   

4.
为研究S38C车轴表层梯度材料的疲劳裂纹扩展性能,直接从现车车轴截取试样,保持实际车轴表层具有的显微组织、硬度及其残余应力呈梯度变化的情况,采用三点弯曲加载方法,检测疲劳裂纹在硬化层、过渡层和芯部基体的扩展性能。结果表明,随着表层裂纹长度的增加,疲劳裂纹扩展速率呈现先增加后减小最后增加的趋势。通过测量不同表层深度位置的残余应力分布,发现距车轴表面深度0~3 mm内存在较大的残余应力压应力,使得疲劳裂纹扩展需要更大的驱动力,而距车轴表面深度3 mm后转变为拉应力,对疲劳裂纹扩展没有影响。  相似文献   

5.
超声滚压处理提高30CrNiMo8钢疲劳性能可行性的研究   总被引:1,自引:0,他引:1  
为了提高机车牵引电机轴的疲劳性能,对30CrNiMo8电机轴用钢进行了超声滚压强化处理。采用金相组织和表面形貌观察、表层硬度和残余应力以及疲劳极限测试等实验手段研究了精车加工试样分别经磨削和超声滚压处理后的表层组织、表面粗糙度、硬度和残余应力以及疲劳性能的变化规律。结果表明,超声滚压后试样表层产生了约300μm厚的变形层,距表面越近塑性变形程度越大,并在最表面产生了2~3μm厚的白亮层。与磨削处理相比,经超声滚压处理后试样的表面粗糙度Ra由精车的1. 886μm减小到1. 303μm,与磨削的1. 404μm相当;而表面硬度由350 HV增加到446HV,且随着距表面的距离增加而逐渐减小,其硬化层厚度约为300μm;而表层残余压应力由-249MPa大幅度提高到-838 MPa。超声滚压试样的疲劳极限比磨削试样的提高了约为33. 5%。此外,根据表面的粗糙度值,可以用超声滚压替代磨削这一工序。  相似文献   

6.
超声强化技术可用来改善材料表面完整性以提高其疲劳性能.本文针对超声滚压强化对低合金高强钢疲劳性能的影响进行研究,通过分析超声强化的强化机理及疲劳试样实验,采用金相显微镜、微观硬度仪及扫描电镜对30CrMnSiNi2A疲劳试样进行微观结构及显微硬度的测试,结果表明,经过超声强化后试样表面出现一层强化层,组织更为细密,显微...  相似文献   

7.
高速铁路车轴长期服役中形成各种损伤,严重破坏了结构完整性.为此,首先采用喷丸处理(SP)对车轴钢试样进行强化,运用空气炮装置预制异物损伤(FOD),基于X射线衍射和纳米压痕仪得到喷丸强化试样表层的残余应力和微观硬度分布,开展高周疲劳试验分别获得未强化光滑试样(UnSPed+UnFODed)、强化处理的光滑试样(SPed+UnFODed)、未强化处理的FODed试样(UnSPed+FODed)和强化处理的FODed试样(SPed+FODed)的疲劳S-N曲线,同时考虑疲劳寿命数据的分散性,引入C95R95的概率评估方法得到上述各类试样的疲劳P-S-N曲线.最后,建立了伤损车轴材料的修正Kitagawa-Takahashi图.研究发现,异物损伤过程将会显著降低车轴钢试样的疲劳强度和寿命,然而由于残余压应力和硬化层的存在,喷丸强化能够有效提高受到FOD冲击试样的抗疲劳性能,具有重要的工程应用价值.  相似文献   

8.
对TC4钛合金单面修饰激光焊接接头进行激光冲击强化,对比强化前后焊接接头的疲劳寿命,在光学显微镜和扫描电镜下观察断口疲劳断裂特征,并从焊接接头的显微硬度、微观组织、残余应力分布等方面综合分析激光冲击强化对TC4钛合金单面修饰激光焊接接头的强化机理。试验结果表明:未强化和强化试样均在焊缝咬边处萌生疲劳裂纹,强化试样疲劳寿命是未强化试样疲劳寿命的3.77~9.15倍,强化试样焊缝咬边处马氏体细化,显微硬度提高,焊缝表面呈残余压应力分布,焊缝咬边处残余压应力达-564.37±9.85MPa。晶粒细化和高幅值残余压应力综合作用下抑制了焊缝咬边处疲劳裂纹的萌生,且增大了裂纹扩展阻力,从而提高了焊接接头疲劳性能。  相似文献   

9.
使用HK30数控车床对GCr15SiMn轴承钢进行表面超声滚压处理,利用金相显微镜和扫描电镜观察试样超声滚压前后表面形貌和截面组织,并对比分析了超声滚压处理前后试样的硬度、表面粗糙度和残余应力.研究结果表明:超声滚压处理后,试样表面显微组织发生明显的塑性变形,形成约1μm的塑性变形层;试样平均表面粗糙度Ra值降低,表面...  相似文献   

10.
设计了特殊的拉伸滚压装置,使试样在不同的拉伸应力状态下进行滚压。在卸载后可形成不同的残余压应力,这就有可能使表层硬度和表面光洁度保持恒定,单独变化残余应力的分布,以考察其对疲劳性能的影响。试验结果表明,调质钢在表面滚压后,过高的残余压应力对疲劳极限没有贡献,这是由于软材料中高的残余压应力与载荷中压应力迭加超过屈服强度而发生松弛的缘故。调质钢试样滚压后硬度的增加对提高疲劳极限起了重要的作用,但松弛后的残余应力对疲劳极限也有贡献。用Fuchs提出的判据来检查残余应力的静载松弛,必须考虑到表面层经滚压后的硬化作用。  相似文献   

11.
针对铁路车轴的表面损伤问题,提出了表面滚压技术应用于提高铁路车轴疲劳性能的可行性,综述了滚压强化技术的原理,详述了机械滚压技术、超声滚压技术、温滚压技术以及激光辅助滚压技术在铁路车轴表面处理中的应用现状,并指出完善滚压强化技术使得其能适应零件形式的多样性,优化获得高效稳定的滚压强化工艺,组织强化机理的实验和理论研究以及滚压后材料内部及深度方向残余应力的分布规律研究是未来的研究重点,为拓展其应用提供理论基础。  相似文献   

12.
对高强螺纹进行滚压处理可有效提高螺纹结构的抗疲劳性能。为深入研究螺纹滚压工艺规律,以提高螺纹紧固件的抗疲劳性能,建立螺纹滚压工艺三维有限元模型,并基于该模型研究了滚轮参数对滚压后残余应力的影响规律,最终采用疲劳试验验证了该方法的有效性。结果表明:滚轮型面夹角、直径、型面圆弧半径等参数对滚压后引入的残余应力分布具有很大影响。滚轮型面夹角越小,滚压后引入的残余压应力层越深;较小的滚轮直径有利于引入较大的残余压应力和残余应力层深;较大的圆弧半径可获得较高的表面残余压应力和最大残余压应力,同时在一定范围内导致残余应力层深减小。疲劳试验结果表明,采用未经优化的滚轮强化后,螺纹疲劳寿命提高1.6倍,而采用经优化设计的滚压轮强化后,螺纹疲劳寿命提高4倍。该结果证实了基于有限元分析的滚轮优化方法的有效性。  相似文献   

13.
试验研究了ZK60镁合金表面滚压加工中工艺参数对试件表面粗糙度、表面形貌、表面残余应力和表层显微硬度的影响,结果表明滚压力和重复滚压次数对试件的表面粗糙度、表面形貌以及表面残余应力和表层硬度影响程度较大,滚压速度影响较小。对精车ZK60镁合金试件进行滚压加工,试件表面粗糙度R a、R z最大减小了50.3%和48.1%;残余压应力最大可达-54.55 MPa;显微硬度从试件表层到内部基体材料逐渐降低,表层硬度值最大为92.83 HV 0.25,比基体材料硬度提高了15.32%。  相似文献   

14.
为了研究激光冲击强化对LZ50车轴钢疲劳性能的影响,对LZ50车轴钢车轴试样进行激光冲击强化处理并在JD-1轮轨模拟试验机上进行了旋转弯曲疲劳试验。结果显示:采用不同参数激光冲击强化处理的2个试样,硬度分别增大18%和27%;对LZ50车轴钢试样的过盈配合面进行激光冲击处理后产生了塑性变形层,形成了较高的残余压应力;试验后试样过盈配合表面两侧区域都可见明显的环形损伤带,出现了以剥落和犁沟为特征的磨损形貌,损伤机制为磨粒磨损、氧化磨损和剥层。激光冲击前后试样断口形貌特征相似,疲劳源呈多源性;在裂纹扩展区域段观察到大量的准解理小面,属于脆性穿晶断裂;瞬断区内出现大量韧窝和二次裂纹。激光冲击强化处理显著提高了车轴钢的疲劳寿命,不同激光冲击强化参数处理的2个车轴试样疲劳寿命比未处理试样疲劳寿命分别提高31%和21%。  相似文献   

15.
采用超声表面滚压处理(USRP)技术对45钢表面进行强化处理,通过表面形貌和表层显微组织观察、表面粗糙度和摩擦磨损性能测试,研究了USRP对该钢摩擦学性能的影响及机理。结果表明:USRP试样的表面粗糙度由未处理试样的3.2μm降低到0.23μm;显微组织得到了细化,晶粒取向趋于随机分布,有大角度晶界出现;表面显微硬度比未处理试样的提高约56%,强化层厚度达到400μm;USRP试样的摩擦因数小于未处理试样的,磨损量为未处理试样的1/4;未处理试样磨损过程中表面材料呈"片块状"脱落,磨损机制为黏着磨损,USRP试样磨损表面上存在犁皱形成的沟槽,磨损机制为磨粒磨损。  相似文献   

16.
高强度喷丸对300M钢抗疲劳性能的影响   总被引:1,自引:0,他引:1  
卢国鑫  陆峰 《机械工程材料》2015,39(1):20-23,28
采用喷丸强度分别为0.424mm和0.576mm的两种工艺对300M钢进行高强度喷丸强化,从表面完整性、残余应力场、显微硬度及抗疲劳性能等方面研究了高强度喷丸对300M钢的强化效果。结果表明:喷丸强化处理后,300M钢试样喷丸面均被弹坑完全覆盖,表面粗糙度显著提高;喷丸后试样表层形成较高的残余压应力场,表面显微硬度得到提高;喷丸后试样疲劳寿命比喷丸强化前的有小幅提高,较高的表面粗糙度造成的应力集中以及微裂纹的产生是其疲劳寿命没有明显提高的主要原因。  相似文献   

17.
40Cr超声表面滚压加工纳米化   总被引:13,自引:1,他引:13  
采用超声表面滚压(Ultrasonic surface rolling extrusion,USRE)加工方法对调质态40Cr轴进行处理.通过对处理表层进行微观结构观察发现:该加工方法既可以使表层纳米晶粒细化至3~7nm,还可以使表面粗糙度水平降至0.05μm:USRE样品表面附近区域形成了厚度约为200μm的流变组织,且晶粒尺寸沿厚度方向呈现梯度分布.力学性能测试证明:USRE试件表面显微硬度提高了63%,表面残余应力最高为-846 MPa,压缩应力层深度可达1mm以上.摩擦磨损对比试验表明:USRE方法能够降低金属表面摩擦因数,提高其抗磨损性能.  相似文献   

18.
球铁曲轴激光冲击强化实验研究   总被引:1,自引:0,他引:1  
为了研究激光冲击强化对球铁性能的影响,采用钕玻璃脉冲激光(波长为1054nm,脉冲宽度为23ns)对球墨铸铁(简称球铁)曲轴试样表面进行冲击强化处理,并对其显微硬度、残余应力和疲劳强度进行实验测试与分析。结果表明,在激光功率密度为10.6GW/cm2的强脉冲激光作用下,冲击区的显微硬度明显增加,表层材料的显微硬度比基体约提高65%~75%;冲击区表面存在残余压应力,数值高达-400MPa,使用寿命提高150%。实验结果表明,激光冲击球铁曲轴的强化效果明显。  相似文献   

19.
激光冲击强化对镍基高温合金疲劳寿命的研究   总被引:5,自引:0,他引:5  
对镍基高温合金GH742疲劳试样进行了激光冲击强化处理,对强化后的试样首先进行了残余应力测试,发现处理后的试样表层产生了很高的残余压应力;然后进行拉一拉疲劳试验,结果表明激光冲击强化能显著提高镍基高温合金的疲劳寿命;最后从断口分析的角度解释了激光冲击强化改善材料疲劳性能的原因.  相似文献   

20.
对42CrMoA高强钢进行了单次喷丸、精整复合喷丸、抛光复合喷丸强化处理,研究了不同喷丸工艺下钢的表面粗糙度、疲劳性能、表层残余应力、组织细化程度及显微硬度。结果表明:喷丸方式对42CrMoA钢最大残余压应力和应力层深度影响不大;单次喷丸、精整复合喷丸、抛光复合喷丸后钢的表面残余压应力、表面组织细化程度、显微硬度及疲劳极限依次增大,表面粗糙度则依次减小;复合喷丸尤其是抛光复合喷丸可显著降低42CrMoA钢的喷丸表面粗糙度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号