首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磁控溅射纳米SnO_2薄膜的气敏特性   总被引:4,自引:0,他引:4  
采用磁控溅射制备SnO2薄膜气敏元件,测试了气敏元件的性能,研究了SnO2薄膜气敏元件薄膜厚度、元件加热功率和环境温度和湿度对元件的影响,气敏元件具有很好的灵敏度和选择性特性,对其敏感机理进行了探讨。  相似文献   

2.
ZnO薄膜在传感器方面的最新应用进展   总被引:3,自引:1,他引:2  
ZnO薄膜是一种新型的、性能优良的半导体材料.本文详细介绍了ZnO薄膜在声光器件、压电器件、气敏元件、声表面波器件、压力元件、湿敏元件和紫外探测器等方面的最新应用进展,并对该材料的发展趋势进行了展望.  相似文献   

3.
本文讨论了半导体薄膜型气敏元件的导电机理,介绍了为探测NOx(NO_2、NO)有害气体而研制的SnO_2薄膜型气敏元件的结构、气敏特性及应用气敏元件制成的报警、测量两用仪的原理和结构。  相似文献   

4.
普通的α—Fe_2O_3,由于其所具有的高稳定性,对气体是不够敏感的。由于加入了SO_4~(2-)和 M~(4+)(M=Sn,Ti,Zr)使其微细化后成了具有实用价值的气敏材料。通常被用于检测烷烃等可燃性气体。在此基础上,用超微粒 Au 敏化的 Ti—α—Fe_2O_3材料实现了对 CO 的选择性检测。研制超微粒化、薄膜化和复合化的α—Fe_2O_3新型材料是当前气敏材料研究领域的一个重要课题。一、实验方法利用文献的方法合成超微粒氧化铁,并制成管状气敏元件,经热处理获得所需气敏元件。采用外加热动态脉冲法测试其气敏性能,用 Ra/Rg 表示气敏元件的灵敏度。  相似文献   

5.
采用射频反应磁控溅射方法制备掺杂多壁碳纳米管(MWCNTs)的snO2薄膜材料,并在此基础之上制作了N02气敏传感器,使用扫描电子显微镜(SEM)和X射线衍射仪(XRD)研究了SnO2/MWCNTs薄膜材料的表面形貌、物质组份材料特性,采用气敏元件测试系统来分析优越感的气敏效应,包括灵敏度、选择性、响应-恢复等特性,实验结果表明该气敏传感器对超低浓度(10ppb)NO2气体有很好的灵敏度,对干扰气体不敏感,提出了气敏机理解释实验现象.  相似文献   

6.
SnO2超微粒薄膜气敏元件的研制与测试   总被引:2,自引:0,他引:2  
用射频磁控反应溅射法在Si基片上沉积SnO_2超微粒薄膜,溅射过程中适量掺Pd,用IC技术制成气敏元件.实验结果表明:该元件在90℃左右时对氢气有极高的灵敏度,是一种薄膜化、集成化、高选择性的气敏元件.本文介绍薄膜制备、微观结构分析、元件设计及气敏特性测试.  相似文献   

7.
超微粒氧化铁的制备与气敏性能的研究   总被引:1,自引:0,他引:1  
本文采用PCVD法制备了纳米级的超微粒氧化铁气敏材料.用这种材料制备的气敏元件具有工作温度低、灵敏度高、响应速度快、稳定性好等优点.不需掺杂,改变工作温度和热处理温度便可获得对酒精蒸汽和C_2H_2气体具有选择性的气敏元件.这种材料像SnO_2,ZnO气敏材料一样,在205℃左右出现电导极值.超微粒α-Fe_2O_3的气敏机制属表面控制型.  相似文献   

8.
摘 要:本文采用溶胶-凝胶法(sol-gel)制备出氧化铁-氧化铟复合材料,利用提拉法将复合材料固定在锡掺杂玻璃光波导表面研究出能够检测二甲苯气体的Fe2O3-In2O3复合薄膜/锡掺杂玻璃光波导气敏元件。将气敏元件固定在气体检测系统中对挥发性有机气体进行检测。实验结果表明,Fe2O3-In2O3复合薄膜/锡掺杂玻璃光波导气敏元件对二甲苯气体具有较好的响应,其响应浓度范围为1×10-3~1×10-5(V/V)。在常温下该敏感元件对于浓度为1×10-5(V/V)的二甲苯蒸汽有比较明显响应,其响应和恢复时间分别为5s和20s。Fe2O3-In2O3复合薄膜/锡掺杂玻璃光波导气敏元件具有灵敏度高、响应速度快、制作工艺简单和可逆性好等特点。  相似文献   

9.
一、前言金属氧化物半导体气敏传感器,由于其灵敏度高、寿命长、价格低、重量轻等优点,显示出广泛应用的潜力。到目前为止气敏材料的研究已逐渐从单纯的实验室配方的研究进入了有一定理论指导的、能适当进行材料设计的阶段,特别是出现了微处理机与敏感元件相结合的新趋势,促进了传感器日益趋于集成化、叠层化、多功能化和智能化。气敏元件的种类也越来越多,最常见的有三种类型,即烧结型、薄膜型和厚膜型。厚膜型  相似文献   

10.
多层薄膜结构气敏效应研究   总被引:4,自引:0,他引:4  
在SnO2气敏薄膜层上覆盖一层或多层钝化材料(SiO2,Al2O3) 薄膜,制成的多层膜气敏元件,可很好地排除大分子气体如乙醇等对小分子H2检测的干扰,使其具有单独检测H2的功能。本文还通过测量元件的升温曲线,推导出敏感体表面的氧吸附活化能;找出活化能与灵敏度、选择性的关系。根据实验现象和物性分析结果,试着探讨了元件的敏感机理。  相似文献   

11.
MOCVD法制备薄膜型Fe2O3气敏元件   总被引:1,自引:1,他引:0  
赵世勇  淳于宝珠 《化学传感器》1996,16(2):112-115,120
本文采用MOCVD技术制备了薄膜型Fe2O3气敏元件。测定了元件的物理性能和气敏特性。该气敏元件对乙醇、丙酮和液化石油气有较高的灵敏度,响应时间快,对甲烷、管道煤气、硫化氢等气体不敏感,具有一定的选择性。还考查了元件的稳定性。  相似文献   

12.
XPS分析表明,用直流溅射法制备的掺钯薄膜气敏元件,钯的溅射率比锡高,在薄膜中钯的含量高于靶中的含量、和纯SnO_2薄膜相比,此元件对还原性气体有很高的灵敏度,尤其对H_2和CH_4.对于该元件的气敏机理也作了初步探讨.  相似文献   

13.
氧化铁薄膜的PCVP过程 及其气敏性能初探   总被引:1,自引:0,他引:1  
由于α-Fe_2O_3具有较高的化学稳定性,一般认为它无气敏效应,后来才发现微细化、低结晶化及薄膜化的α-Fe_2O_3具有显著的气敏性,因此其气敏效应的发现晚于γ-Fe_2O_3。现已有了实用化的α-Fe_2O_3气敏元件,因而研究微细化的α-Fe_0O_3薄膜气敏村料成为必要,这对于材料的稳定生长和质量控制以及薄膜生长的微机控制都具有现实的意义,而研究氧化铁气敏薄膜的成膜工艺及动力学目前还未见详细报道。 实验是在一个真空反应管内进行的,衬底用电炉加热,温度由水银计显示,用10.5MHz高频电场等离子体激发源,以二茂铁为源材,以氧气为氧化剂兼作载气。氧  相似文献   

14.
n+n组合结构半导体丙酮气敏元件研究   总被引:1,自引:0,他引:1  
n n组合结构半导体气敏元件是基于气敏元件互补反馈原理的一种新结构半导体气敏元件.该元件是由2种传导类型相同的敏感体A和B构成,A和B都是n型半导体材料.理论分析表明:当敏感体A和B满足一定条件时,该元件具有高的选择性,同时,还具有好的热稳定性和高的灵敏度.通过试验,获得了性能较好的n n组合结构丙酮气敏元件.  相似文献   

15.
稀土掺杂薄膜型气敏元件   总被引:2,自引:0,他引:2  
介绍稀土掺杂薄膜型气敏元件的制作工艺和敏感性能,测试结果表明,掺Eu2O3的元件对丙酮敏感性高,而掺Nd2O3的元件对乙炔气敏感性高,文中对这类元件的气敏机理作了简单的讨论。  相似文献   

16.
曾文  林志东 《传感器世界》2007,13(9):13-16,20
以纳米TiO2为基料掺杂适量SnO2作为气敏材料,通过传统的气敏传感器制备技术,制作出旁热式气敏传感器,研究了此类传感器对有机挥发气体甲醇、甲醛、乙醇、丙酮的气敏特性,并利用Gaussian03软件,对各被测气体的分子轨道进行了计算分析,对TiO2-SnO2气敏元件的选择性机理做了定性分析.结果表明:TiO2-SnO2传感器对甲醇、甲醛、乙醇等有机挥发性气体具有极高的灵敏度,在不同工作电压下对各类气体表现出较好的选择性,气体分子轨道能量的差异是元件气敏选择性的定性因素.  相似文献   

17.
采用溶胶—凝胶法制得WO3/SrAl2 O4复合气敏材料.经过工艺加工制得旁热式厚膜陶瓷元件在密封的气室内测试,获得了对H2 S气体具有良好灵敏度、选择性和响应恢复性的气敏元件.为检测和治理生产生活中的H2 S污染,提供了可供参考应用的气敏传感元件.  相似文献   

18.
ZnO系半导体陶瓷气敏传感器的进展   总被引:4,自引:0,他引:4  
本文综述了ZnO系气敏半导体材料的发展慨况,讨论了元件的结构与气敏效应的关系,评述了解释ZnO系气敏材料性质的敏感机理,探讨了目前存在的问题及今后的发展方向。  相似文献   

19.
WO_3掺杂NiO的气敏性能研究   总被引:2,自引:1,他引:1  
用水热法制备出NiO纳米粉体,对其进行了WO3系列掺杂。利用XRD对产物晶相结构进行表征,测试了掺杂材料的气敏性能。结果表明:适量WO3的掺杂明显改善了NiO材料的气敏性能,其中,掺杂质量分数为6%的气敏元件性能最好,350℃时对Cl2的灵敏度可达到37.5,200℃时对H2S的灵敏度可达30.4。说明该元件在不同温度下对不同气体具有选择性,且该元件对H2S响应恢复快。  相似文献   

20.
研究并设计了一种新型智能气敏传感器.简要介绍了TiO2气敏元件及气敏机理.将拥有ARM7内核的LPC2131微处理器做为主控制器,实时监测电源电压,实现对温度准确控制,同时测量气敏薄膜的电阻,经元件阻值和气体浓度的校准后,显示被测气体浓度,同时提供一个友好的用户界面,并具备报警功能,实现了气敏传感器智能化,具有动态测量范围大(1~500 MΩ),精确度高(精确度优于0.5%),功耗低、体积小、成本低、可重复利用等特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号