首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective ion exchange is one of the preferred treatment technologies for removing low levels of perchlorate (ClO4-) from contaminated water because of its high efficiency and minimal impact on water quality through the addition or removal of chemicals and nutrients. However, the exceptionally high affinity of ClO4- for type I anion-exchange resins makes regeneration with conventional NaCl brine extremely difficult and costly for practical applications. The present study entails the development of a novel regeneration methodology applicable to highly selective anion-exchange resins. Tetrachloroferrate (FeCl4-) anions, formed in a solution of ferric chloride and hydrochloric acid (e.g., 1 M FeCl3 and 4 M HCl), were found to effectively displace Cl04- anions that were sorbed on the resin. A mass-balance analysis indicated that a nearly 100% recovery of ion-exchange sites was achieved by washing with as little as approximately 5 bed volumes of the regenerant solution in a column flow-through experiment There was no significant deterioration of the resin's performance with respect to ClO4- removal after repeated loading and regeneration cycles. Thus, the new methodology may offer a cost-effective means to regenerate ClO4- -loaded resins with improved regeneration efficiency, recovery, and waste minimization in comparison with conventional brine regeneration techniques.  相似文献   

2.
Despite favorable thermodynamics, the reduction of perchlorate (ClO4-) is kinetically limited in aqueous media because of its high activation energy. In this paper, a new methodology has been presented for degrading ClO4- in an FeCl3-HCl solution at an elevated temperature (< 200 degrees C) and/or pressure (approximately 20 atm). Results indicate that the rate constant for the pseudo-first-order reaction between ClO4- and ferrous Fe(II) (in excess) increased nearly 3 orders of magnitude when the temperature was increased from 110 to 195 degrees C, and a complete reduction of ClO4- occurred in < 1 h at 195 degrees C in the FeCl3-HCl solution. The activation energy of the reaction was calculated to be about 120 kJ/mol. Additionally, a flow-through reactor was constructed based on the batch kinetic measurements, and a nearly complete degradation of ClO4- was observed under continuous-flow mode. Because the FeCl3-HCl solution has been successfully used in regenerating selective anion-exchange resins sorbed with ClO4- during water treatment, this new methodology offers a cost-effective means to degrade ClO4- while not altering the chemical properties of the FeCl3-HCl regenerant solution so it can be reused, eliminating the production of secondary wastes.  相似文献   

3.
This study investigated the sorption affinity and capacity of six strong-base anion-exchange (SBA) resins for both uranium [U(VI)] and perchlorate (ClO4-) in simulated groundwater containing varying concentrations of sulfate (SO4(2-)). Additionally, desorption of U(VI) from spent resins was studied to separate U(VI) from resins with sorbed ClO4- for waste segregation and minimization. Results indicate that all SBA resins investigated in this study strongly sorb U(VI). The gel-type polyacrylic resin (Purolite A850) showed the highest sorption affinity and capacityfor U(VI) butwasthe least effective in sorbing ClO4-. The presence of SO4(2-) had little impact on the sorption of U(VI) but significantly affected the sorption of ClO4-, particularly on monofunctional SBA resins. A dilute acid wash was found to be effective in desorbing U(VI) but ineffective in desorbing ClO4- from bifunctional resins (Purolite A530E and WBR109). A single wash removed approximately 75% of sorbed U(VI) but only approximately 0.1% of sorbed ClO4- from the bifunctional resins. On the other hand, only 21.4% of sorbed U(VI) but approximately 34% of sorbed ClO4- was desorbed from the Purolite A850 resin. This study concludes that bifunctional resins could be used effectively to treatwater contaminated with ClO4- and traces of U(VI), and dilute acid washes could minimize hazardous wastes by separating sorbed U(VI) from ClO4- prior to the regeneration of the spent resin loaded with ClO4-.  相似文献   

4.
Several studies have reported on the detection of perchlorate (ClO(4)(-)) in edible leafy vegetables irrigated with Colorado River water. However, there is no information on spinach as related to ClO(4)(-) in irrigation water nor on the effect of other anions on ClO(4)(-) uptake. A greenhouse ClO(4)(-) uptake experiment using spinach was conducted to investigate the impact of presence of chloride (Cl(-)) and nitrate (NO(3)(-)) on ClO(4)(-) uptake under controlled conditions. We examined three concentrations of ClO(4)(-), 40, 220, and 400 nmol(c)/L (nanomoles of charge per liter of solution), three concentrations of Cl(-), 2.5, 13.75, and 25 mmol(c)/L, and NO(3)(-) at 2, 11, and 20 mmol(c)/L. The results revealed that ClO(4)(-) was taken up the most when NO(3)(-) and Cl(-) were lowest in concentration in irrigation water. More ClO(4)(-) was detected in spinach leaves than that in the root tissue. Relative to lettuces, spinach accumulated more ClO(4)(-) in the plant tissue. Perchlorate was accumulated in spinach leaves more than reported for outer leaves of lettuce at 40 nmol(c)/L of ClO(4)(-) in irrigation water. The results also provided evidence that spinach selectively took up ClO(4)(-) relative to Cl(-). We developed a predictive model to describe the ClO(4)(-) concentration in spinach as related to the Cl(-), NO(3)(-), and ClO(4)(-) concentration in irrigation water.  相似文献   

5.
The relative effects of sulfate (SO4(2-)), chloride (Cl-), nitrate (NO3-), and bicarbonate (HCO3-) (8 mM ionic strength solutions, adjusted to pH 10) on the reactivity of Master Builders iron was investigated using a low-abrasion batch reactor with a glass-encased magnet (GEM). Reactivity of the granular iron surface was assessed by measuring the reduction rate of 4-chloronitrobenzene (4ClNB) as a function of initial 4CINB concentration and anion type. Relative to a similarly prepared perchlorate (ClO4-) solution, in which perchlorate was assumed not to interact with the iron surface, nitrate and bicarbonate inhibited the reduction of the probe compound (4ClNB). Chloride and sulfate enhanced reactivity. Thus, the anions were ranked SO4(2-) > Cl- > or = ClO4- > NO3- > HCO3 (from most enhanced to most inhibited) in their influence on granular iron reactivity toward 4ClNB. Kinetic studies of 4CINB were conducted under conditions that caused the iron surface to saturate with the reacting compound (saturation kinetic studies). These experiments, conducted in the various anion solutions indicated above, showed that the gains in reactivity that occurred in the presence of Cl- and SO4(2-) were due to either increased surface reactivity or sorption capacity. The losses in reactivity that occurred in the presence of NO3- were due to decreases in one or both of these same two factors. However, reactivity declines in the presence of CO3(2-) appear to have been due, in large part, to a reduced affinity of 4ClNB for the iron surface.  相似文献   

6.
Chelating agents are widely employed in many separation processes used to recover uranyl [U(VI)] from contaminated aqueous solutions. This article describes an experimental investigation of the binding of U(VI) to poly(amidoamine) [PAMAM] and poly(propyleneimine) [PPI] dendrimers in aqueous solutions. We combine fluorescence spectroscopy with bench scale ultrafiltration experiments to measure the extent of binding and fractional binding of U(VI) in aqueous solutions of these dendrimers as a function of (i) metal-ion dendrimer loading, (ii) dendrimer generation, (iii) dendrimer core and terminal group chemistry, and (iv) solution pH and competing ligands (NO3-, PO4(3-), CO3(2-), and Cl-). The overall results of this study suggest that uranyl binding to PAMAM and PPI dendrimers in aqueous solutions involves the coordination of the UO2(2+) ions with the dendrimer amine, amide, and carboxylic groups. We find significant binding of U(VI) to PAMAM dendrimers in (i) acidic solutions containing up to 1.0 M HNO3 and H3PO4 and (ii) in basic solutions containing up to 0.5 M Na2CO3. However, no binding of U(VI) by PAMAM dendrimers is observed in aqueous solutions containing 1.0 M NaCl at pH 3.0. These results strongly suggest that PAMAM and PPI dendrimers can serve as high capacity and selective chelating ligands for U(VI) in aqueous solutions.  相似文献   

7.
Treatment of perchlorate-contaminated water using highly selective, regenerable ion-exchange and perchlorate-destruction technologies was demonstrated at a field site in California. Four treatment and four regeneration cycles were carried out, and no significant deterioration of resin performance was noted in 2 years. The bifunctional resin (Purolite A-530E) treated about 37,000 empty bed volumes (BVs) of groundwater before a significant breakthrough of perchlorate occurred at an average flow rate of 150 gpm (or 1 BV/min) and a feed perchlorate concentration of about 860 microg/L. Sorbed perchlorate (approximately 20 kg) was quantitatively recovered by eluting with as little as 1 BV of the FeCl3-HCl regenerant solution. The eluted ClO4- was highly concentrated in the third quarter of the first BV of the regenerant solution with a concentration up to 100,000 mg/L. This concentrated effluent greatly facilitated subsequent perchlorate destruction or recovery by precipitation as KClO4 salts. High perchlorate destruction efficiency (92-97%) was observed by reduction with FeCl2 in a thermoreactor, which enabled recycling of the FeCl3-HCl regenerant solution, thereby minimizing the need to dispose of secondary wastes containing ClO4-. This study demonstrates that a combination of novel selective, regenerable ion-exchange and perchlorate-destruction and/or recovery technologies could potentially lead to enhanced treatment efficiency and minimized secondary waste production.  相似文献   

8.
Phytoremediation of perchlorate (ClO4) by poplar trees Populus deltoidex nigrawas investigated using small cuttings growing in hydroponic Hoagland solution and plant tissue cultures, consisting of spherical photosynthetic cell aggregates (i.e. nodules) developing in Murashige and Skoog culture medium. Both plants and nodules were grown under a 16 h/8 h photoperiod cycle and under sterile conditions. Degradation experiments, performed by the incubation of pregrown plants and nodules in the presence of 36Cl radio-labeled ClO4- (25 mg L(-1)), showed a reduction of the initial ClO4- concentration in the solution of about 50% after 30 d of incubation. Analysis of the distribution of radioactivity in different plant fractions indicated that 27.4% of the total was translocated to the leaves, while 66.9% remained in the solution. Very little radioactivity (less than 3.0%) was detected in the other parts of the plants. 32.0% of the radioactivity recovered in the solution was shown to consist of 36Cl- and 68.0% of nontransformed 36ClO4-. The radioactivity recovered in the leaf extracts was distributed as chloride (36Cl-) (1.6% of the total), chlorite (36ClO2-) (2.4%), chlorate (36ClO3-) (4.8%), nontransformed 36ClO4- (21.6%), and an unidentified organic compound (1.4%). The radioactivity recovered in the solution containing submerged nodules consisted of 36Cl- (6.4% of the total), 36ClO3- (1.3%), and nontransformed 36ClO4- (51.5%). Radioactivity detected in the nodule extracts was distributed as 36Cl- (2.0% of the total), 36ClO2- (5.2%), 36ClO3- (6.4%), 36ClO4- (22.7%), and an unidentified organic compound (0.5%). These results provide evidence of perchlorate reduction inside poplar tree tissues. 36ClO4- is partially reduced to 36ClO3-, 36ClO2-, and 36Cl-.  相似文献   

9.
Perchlorate contamination of surface water and groundwater is an emerging public health problem that has adversely affected the drinking water supplies of millions of people in the western United States. Microbial reduction has shown promise as a cost-effective means for in situ bioremediation of perchlorate-contaminated water. Measurements of stable isotope ratios of light elements (H, C, N, O, S, Cl) can often be used to distinguish biodegradation of organic and inorganic molecules from abiotic loss mechanisms such as adsorption, dispersion, or volatilization because of the relatively large kinetic isotope effects accompanying biodegradation. We quantified chlorine isotope fractionation during perchlorate biodegradation by a common perchlorate-reducing bacterium, Dechlorosoma suillum, initially isolated from a perchlorate-contaminated groundwater source in southern California. The values of the chlorine isotopic fractionation factor alpha derived from two microcosm experiments were alpha = 0.9834 +/- 0.0001 (R2 = 0.9999) and alpha = 0.9871 +/- 0.0008 (R2 = 0.9832). These alpha values indicate that the rate of the 35ClO4 reduction is approximately 1.3-1.7% faster than that of the 37ClO4 reduction. This relatively large kinetic isotope effect indicates that chlorine isotope analysis provides a sensitive technique by which to document in situ bioremediation of perchlorate in groundwater.  相似文献   

10.
Perchlorate (CLO4-) occurrence in groundwater has previously been linked to industrial releases and the historic use of Chilean nitrate fertilizers. However, recently a number of occurrences have been identified for which there is no obvious anthropogenic source. Groundwater from an area of 155,000 km2 in 56 counties in northwest Texas and eastern New Mexico is impacted bythe presence of ClO4-. Concentrations were generally low (<4 ppb), although some areas are impacted by concentrations up to 200 ppb. ClO4- distribution is not related to well type (public water system, domestic, agricultural, or water-table monitoring) or aquifer (Ogallala, Edward Trinity High Plains, Edwards Trinity Plateau, Seymour, or Cenozoic). Results from vertically nested wells strongly indicate a surface source. The source of ClO4- appears to most likely be atmospheric deposition. Evidence supporting this hypothesis primarily relates to the presence of ClO4- in tritium-free older water, the lack of relation between land use and concentration distribution, the inability of potential anthropogenic sources to account for the estimated mass of ClO4-, and the positive relationship between conserved anions (e.g., IO3-, Cl-, SO4(-2)) and ClO4-. The ClO4- distribution appears to be mainly related to evaporative concentration and unsaturated transport. This process has led to higher ClO4- and other ion concentrations in groundwater where the water table is relatively shallow, and in areas with lower saturated thickness. Irrigation may have accelerated this process in some areas by increasing the transport of accumulated salts and by increasing the number of evaporative cycles. Results from this study highlight the potential for ClO4- to impact groundwater in arid and semi-arid areas through long-term atmospheric deposition.  相似文献   

11.
This research investigated the mechanism of perchlorate (ClO(4)(-)) formation from chlorate (ClO(3)(-)) on boron-doped diamond (BDD) film anodes by use of a rotating disk electrode reactor. Rates of ClO(4)(-) formation were determined as functions of the electrode potential (2.29-2.70 V/standard hydrogen electrode, SHE) and temperature (10-40 °C). At all applied potentials and a ClO(3)(-) concentration of 1 mM, ClO(4)(-) production rates were zeroth-order with respect to ClO(4)(-) concentration. Experimental and density functional theory (DFT) results indicate that ClO(3)(-) oxidation proceeds via a combination of direct electron transfer and hydroxyl radical oxidation with a measured apparent activation energy of 6.9 ± 1.8 kJ·mol(-1) at a potential of 2.60 V/SHE. DFT simulations indicate that the ClO(4)(-) formation mechanism involves direct oxidation of ClO(3)(-) at the BDD surface to form ClO(3)(?), which becomes activationless at potentials > 0.76 V/SHE. Perchloric acid is then formed via the activationless homogeneous reaction between ClO(3)(?) and OH(?) in the diffuse layer next to the BDD surface. DFT simulations also indicate that the reduction of ClO(3)(?) can occur at radical sites on the BDD surface to form ClO(3)(-) and ClO(2), which limits the overall rate of ClO(4)(-) formation.  相似文献   

12.
Effects of aqueous chlorine dioxide (ClO(2)) treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.) were investigated. Mulberry fruit were immersed into 20, 60, and 80 mg/l ClO(2) solutions for 5, 10, and 15 min, respectively. Mulberries were then rinsed with potable tap water for 1 min and stored at -1°C for 14 d. ClO(2) treatment was effective in retention of flavonoid, ascorbic acid, reducing sugar, and titratable acid. ClO(2) concentration and treatment time were significant factors affecting ClO(2) treatment. The shelf-life of the samples treated by 60 mg/l ClO(2) for 15 min was extended to 14 d compared to 8 d for the control. No ClO(2), ClO(2)(-), or ClO(3)(-) residues were detected in samples treated by 60 mg/l ClO(2) for 15 min. These results indicated that ClO(2) treatment was a promising approach to preserve mulberry fruit with no significant risks of chemical residues.  相似文献   

13.
A simple and highly effective process for perchlorate removal based on electrically switched ion exchange (ESIX) was developed by using polypyrrole (PPy) deposited on high surface area carbon nanotubes. The redox switching of conducting polymers such as polypyrrole is accompanied by the exchange of ions into or out of the polymer. This effect could be used for the development of an electrically switchable ion-exchanger for water purification, particularly for the removal of anions. In the research presented in this paper, the anion-exchange behavior and ion-exchange capacity of electrochemically prepared polypyrrole on glassy carbon electrodes with and without carbon nanotube (CNT) backbones are characterized using cyclic voltammetry and X-ray photoelectron spectroscopy. It has been found that the presence of carbon nanotube backbone results in an improvement in the anion exchange stability of polypyrrole, which may be due to the stronger interaction between carbon nanotubes and polypyrrole. Chronoamperometric studies show that the process of electrically switched anion exchange could be finished within 10 s. The selectivity of PPy/CNTs films for the perchlorate ion is demonstrated using cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). The results of the present study point to the possibility of developing a green process for removing ClO4- from wastewater using such a novel nanostructured PPy/CNT composite thin film through an electrically switched anion exchange.  相似文献   

14.
This article discusses the feasibility of using dendrimer enhanced ultrafiltration (DEUF)to recover Cu(II) from aqueous solutions. Building upon the results of fundamental investigations of Cu(II) binding to PAMAM dendrimers with ethylenediamine (EDA) core and terminal NH2 groups, we combine (i) dead-end ultrafiltration (UF) experiments with (ii) atomic force microscopy (AFM) characterization of membrane fouling to assess the feasibility of using DEUF to recover Cu(II) from aqueous solutions. On a mass basis, the Cu(II) binding capacities of the EDA core PAMAM dendrimers are much larger and more sensitive to solution pH than those of linear polymers with amine groups. The dendrimer-Cu(II) complexes can be efficiently separated from aqueous solutions by ultrafiltration. The metal ion laden dendrimers can be regenerated by decreasing the solution pH to 4.0; thus enabling the recovery of the bound Cu(II) ions and recycling of the dendrimers. The UF measurements and AFM characterization studies show that EDA core PAMAM dendrimers with terminal NH2 groups have very lowtendency to foul the commercially available regenerated cellulose (RC) membranes evaluated in this study. The overall results of these experiments suggest that DEUF is a promising process for recovering metal ions such as Cu(II) from aqueous solutions.  相似文献   

15.
We studied the microbial functional and structural interactions between nitrate (NO(3)(-)) and perchlorate (ClO(4)(-)) reductions in the hydrogen (H(2))-based membrane biofilm reactor (MBfR). When H(2) was not limiting, ClO(4)(-) and NO(3)(-) reductions were complete, and the MBfR's biofilm was composed mainly of bacteria from the ε- and β-proteobacteria classes, with autotrophic genera Sulfuricurvum, Hydrogenophaga, and Dechloromonas dominating the biofilm. Based on functional-gene and pyrosequencing assays, Dechloromonas played the most important role in ClO(4)(-) reduction, while Sulfuricurvum and Hydrogenophaga were responsible for NO(3)(-) reduction. When H(2) delivery was insufficient to completely reduce both electron acceptors, NO(3)(-) reduction out-competed ClO(4)(-) reduction for electrons from H(2), and mixotrophs become important in the MBfR biofilm. β-Proteobacteria became the dominant class, and Azonexus replaced Sulfuricurvum as a main genus. The changes suggest that facultative, NO(3)(-)-reducing bacteria had advantages over strict autotrophs when H(2) was limiting, because organic microbial products became important electron donors when H(2) was severely limiting.  相似文献   

16.
The use of water flotation tanks during apple packing increases the risk of contamination of apples by spores of Penicillium expansum, which may accumulate in the recirculating water. Routine addition of sanitizers to the water may prevent such contamination. Sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and electrolyzed oxidizing (EO) water have varied activity against spores of P. expansum, and their effectiveness could be enhanced using surfactants. The objective of this study was to determine the ability of three nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20), to enhance the efficacy of NaOCl, ClO2, and EO water against spores of P. expansum in aqueous suspension at various temperatures and pH conditions. The efficacy of NaOCl solutions was enhanced by the addition of surfactants at both pH 6.3 and pH 8 (up to 5 log CFU reduction). EO water and ClO2 were effective against P. expansum spores (up to 5 log CFU and 4 log CFU reduction, respectively), but addition of surfactants was not beneficial. All solutions were less effective at 4 degrees C compared to 24 degrees C irrespective of the presence of surfactants. Nonionic surfactants could potentially be used with NaOCl to improve control of P. expansum in flotation tanks, but the efficacy of such formulations should be validated under apple packing conditions.  相似文献   

17.
Although evidence of perchlorate accumulation in plants exists, there is a scarcity of information concerning the key factors and mechanisms involved. To ascertain whether genotypic variation in perchlorate accumulation occurs within lettuce, hydroponic plant uptake experiments were conducted with five types of lettuce (Lactuca sativa L.), which were grown to market size atthree perchlorate (ClO4-) concentrations (1, 5, or 10 microg/L). Perchlorate accumulated in the leafy tissues to varying amounts, ranging from 4 to 192 microg/kg fresh weight (FW), and the ranking of perchlorate accumulation was crisphead > butter head > romaine > red leaf > green leaf. The effect of transpiration rate on perchlorate accumulation was further examined using crisphead, butter head, and green leaf lettuce. By growing lettuce in controlled-environment chambers with two climatic regimes, "cloudy, humid, cool" (80% RH, 18/15 degrees C, 250 micromol/m2s photosynthetic photon flux density (PPFD)) and "sunny, dry, warm" (approximately 50% RH, 28/18 degrees C, 500 micromol/m2s PPFD), up to 2.7-fold differences in transpiration rates were achieved. Across all three genotypes, the plants that transpired more water accumulated more perchlorate on a whole-head basis; however, the effect of transpiration rate on perchlorate accumulation was not as great as expected. Despite 2.0-2.7-fold differences in transpiration rate, there were only 1.2-2.0-fold differences in perchlorate accumulation. In addition to whole-head analysis, plants were sectioned into inner, middle, and outer leaves and processed separately. Overall, the ranking of perchlorate accumulation was outer leaves > middle leaves > inner leaves. Transpiration rate has a clear effect on perchlorate accumulation in lettuce, but other factors are influential and deserve exploration.  相似文献   

18.
Groundwater from remote parts of the Middle Rio Grande Basin in north-central New Mexico has perchlorate (ClO4-) concentrations of 0.12-1.8 micro/L. Because the water samples are mostly preanthropogenic in age (0-28000 years) and there are no industrial sources in the study area, a natural source of the ClO4- is likely. Most of the samples have Br-, Cl-, and SO4(2-) concentrations that are similar to those of modern bulk atmospheric deposition with evapotranspiration (ET) factors of about 7-40. Most of the ET values for Pleistocene recharge were nearly twice that for Holocene recharge. The N03-/Cl- and CIO-/Cl-ratios are more variable than those of Br-/Cl- or S04(2-)/Cl-. Samples thought to have recharged under the most arid conditions in the Holocene have relatively high N03-/Cl- ratios and low delta 15N values (+1 per mil (% per thousand)) similar to those of modern bulk atmospheric N deposition. The delta 18O values of the N03- (-4 to 0% per thousand) indicate that atmospheric N03- was not transmitted directly to the groundwater but may have been cycled in the soils before infiltrating. Samples with nearly atmospheric N03-/CI- ratios have relatively high Cl04- concentrations (1.0-1.8 ug/L) with a nearly constant Cl04-/CI- mole ratio of (1.4 +/- 0.1) x 10(-4), which would be consistent with an average Cl04-concentration of 0.093 0.005 ,ug/L in bulk atmospheric deposition during the late Holocene in north-central NM. Samples thought to have recharged under wetter conditions have higher delta 15N values (+3 to +8 % per thousando), lower NO3-/Cl- ratios, and lower ClO4-/Cl- ratios than the ones most likely to preserve an atmospheric signal. Processes in the soils that may have depleted atmospherically derived NO3-also may have depleted ClO4- to varying degrees prior to recharge. If these interpretations are correct, then ClO4- concentrations of atmospheric origin as high as 4 microg/L are possible in preanthropogenic groundwater in parts of the Southwest where ET approaches a factor of 40. Higher Cl04- concentrations in uncontaminated groundwater could occur in recharge beneath arid areas where ET is greater than 40, where long-term accumulations of atmospheric salts are leached suddenly from dry soils, or where other (nonatmospheric) natural sources of ClO4- exist.  相似文献   

19.
A systematic survey was made of water activity reduction in single non electrolyte aqueous solutions together with an examination of the theoretical aspects of a W predictions. The prediction of a W in multicomponent aqueous solutions of non electrolytes as well as of mixed strong electrolyte–non electrolyte solutions was also studied.  相似文献   

20.
Extraction of boron from aqueous solutions using selective resins is important in a variety of applications including desalination, ultrapure water production, and nuclear power generation. Today's commercial boron-selective resins are exclusively prepared by functionalization of styrene-divinylbenzene (STY-DVB) beads with N-methylglucamine to produce resins with boron-chelating groups. However, such boron-selective resins have a limited binding capacity with a maximum free base content of 0.7 eq/L, which corresponds to a sorption capacity of 1.16 ± 0.03 mMol/g in aqueous solutions with equilibrium boron concentration of ~70 mM. In this article, we describe the synthesis and characterization of a new resin that can selectively extract boron from aqueous solutions. We show that branched polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with glucono-1,5-d-lactone to afford a resin consisting of spherical beads with high density of boron-chelating groups. This resin has a sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium boron concentration of ~70 mM, which is 66% percent larger than that of standard commercial STY-DVB resins. Our new boron-selective resin also shows excellent regeneration efficiency using a standard acid wash with a 1.0 M HCl solution followed by neutralization with a 0.1 M NaOH solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号