首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
In order to solve the difficult problem of heterogeneity of different components in the procedure of ceramic preparation, novel processing (heterogeneous nucleation-and-growth processing) was used to prepare a homogeneous distribution of powders. Composite coated particles with core-shell structures were prepared by the heterogeneous nucleation-and-growth processing. The effects of silica content in composite coating particles versus concentration of tetraethylorthosilicate, pH value, reaction time and reaction temperature were studied. The amorphous silica shell on the cores was confirmed by X-ray diffraction, transmission electron microscopy and zeta potential measurement.  相似文献   

2.
Organic-inorganic hybrid sols were synthesized from nano silica particles dispersed in water and from organoalkoxysilanes, using the sol-gel reaction. This work focuses on the effects of the three multifunctional organoalkoxysilanes dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), and tetramethoxysilane (TMOS) to form a transparent and high-thermal-resistance coating film. The stability of the hybrid sol was evaluated as a function of the reaction time for 10 d through the variation of the viscosity. The viscosity of the silica/DMDMS and silica/MTMS sol was slightly increased for 10 d. The multifunctional organoalkoxysilanes formed dense silica networks through hydrolysis and condensation reaction, which enhanced the thermal resistance of the coating films. No thermal degradation of the silica/DMDMS sample occurred up to 600 degrees C, and none of the silica/MTMS and silica/TMOS samples occurred either up to 700 degrees C. The organic-inorganic hybrid sols were coated on the glass substrate using a spin-coating procedure. The organic-inorganic hybrid sols formed flat coating films without cracks. The transmittance of the hybrid sol coating films using MTMS and DMDMS was shown to be over 90%. The transmittance of the silica/TMOS sol coating film reacted for 10 d abruptly decreased due to faster gelation. The silica/DMDMS and silica/MTMS hybrid sols formed smooth coating films while the surface roughness of the silica/TMOS coating film markedly increased when the hybrid sol reacted for 10 d. The increase of the surface roughness of the silica/TMOS coating film can be attributed to the degradation of the stability of the hybrid sol and to the loss of transmittance of the coating film. It was confirmed in this study that the use of organic-inorganic hybrid sol can yield transparent and high-thermal-resistance coating films.  相似文献   

3.
In the present work, Egyptian ilmenite nanoparticles (FeTiO3 NPs) were obtained with the average diameters of 20?nm by a direct solid-phase milling process and synthesized amorphous silica powder grains were processed to prepare a novel fabricated Egyptian nanoilmenite/amorphous silica composite (ENI/AS) particles. Flaky-like nature of ENI/AS and the spherical shape of Zn-dust particles were emphasized by scanning electron microscopic (SEM) micrographs. The nano features of ENI/AS particles were confirmed by transmission electron microscope (TEM) investigation. Various alkyd-based cold galvanizing coating formulations were modified using different uniformly dispersing amounts of the processed ENI/AS particles as a modifier to form some nanocomposite coatings. The electrochemical behavior of nanocomposite modified coated steel films in oil-wells formation water solution have been studied by both potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The mechanical properties of the coated films were studied through some coating tests as cross-cut adhesion, bend and impact to assert their application efficiency. Scanning electron microscope (SEM) technique was utilized to survey the protective film formed on the carbon steel surface by these modified coatings in formation water solution. The results of this study reinforced remarkable corrosion protection properties of ENI/AS modified cold galvanizing coating.  相似文献   

4.
采用浸涂法将自制的介孔空心SiO2纳米粉体涂覆到堇青石基体上,然后采用微波法负载活性组分Pd和助剂Ni制备了纳米涂层整体式加氢催化剂,并考察空速、涂层增重、Ni助剂添加量等因素对其乙炔选择性加氢催化性能的影响。结果表明:经过涂覆后的堇青石整体式催化剂加氢性能与未涂覆时相比有了显著提高,且添加适量的助剂Ni有助于催化性能的进一步改进。在反应温度为54℃、压力为0.1 MPa、空速为3 800 h-1的条件下,使用涂层增重质量分数为6%、Ni与Pd物质的量比为4∶1的催化剂,当乙炔接近完全转化时,乙烯选择性能够到达40.9%。  相似文献   

5.
热处理对二氧化钛表面二氧化硅包膜的影响   总被引:1,自引:1,他引:0  
通过单流匀速滴定法在二氧化钛颗粒表面均匀包覆一层二氧化硅,系统地研究热处理温度对这层硅包覆层的形貌和相组成的影响;采用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、透射电子显微镜(TEM)和傅立叶红外光谱仪(FTIR)等手段对包硅二氧化钛颗粒进行表征。结果表明:150℃热处理形成连续致密的硅二氧化硅覆层;500℃热处理3 h后形成岛状二氧化硅膜;700℃热处理后形成不连续的硅二氧化硅覆层,并有脱落的倾向;当温度升到1 000℃时,硅二氧化硅覆层会脱落,二氧化钛的粒径增大,大约在1 000℃,二氧化硅包覆层结晶化。  相似文献   

6.
A multilayer photoactive coating containing surface fluorinated TiO(2) nanoparticles and hybrid matrices by sol gel approach based on renewable chitosan was applied on poly(lactic acid) (PLA) film by a step wise spin-coating method. The upper photoactive layer contains nano-sized functionalized TiO(2) particles dispersed in a siloxane based matrix. For the purpose of improving TiO(2) dispersion at the air interface coating surface, TiO(2) nanoparticles were modified by silane coupling agent 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FTS) with fluoro-organic side chains. An additional hybrid material consisting of chitosan (CS) cross-linked with 3-glycidyloxypropyl trimethoxy silane (GOTMS) was applied as interlayer between the PLA substrate and the upper photoactive coating to increase the adhesion and reciprocal affinity. The multilayer TiO(2)/CS-GOTMS coatings on PLA films showed a thickness of ~4-6 μm and resulted highly transparent. Their structure was exhaustively characterized by SEM, optical microscope, UV-vis spectroscopy and contact angle measurements. The photocatalytic activity of the multilayer coatings were investigated using methyl orange (MeO) as a target pollutant; the results showed that PLA films coated with surface fluorinated particles exhibit higher activity than films with neat particles, because of a better dispersion of TiO(2) particles. The mechanical properties of PLA and films coated with fluorinated particles, irradiated by UV light were also investigated; the results showed that the degradation of PLA substrate was markedly suppressed because of the UV adsorptive action of the multilayer coating.  相似文献   

7.
The utilization of renewable resources for the development of organic coatings is a viable means of creating alternatives to petroleum-based chemicals which are not eco-friendly. This paper reports the synthesis of polyesteramide–urethane–silica–zinc oxide hybrid coatings from Thevetia peruviana seed oil (TPSO). The periphery of ZnO nano-particles is modified with 3-aminopropyltrimethoxysilane to prepare silica grafted ZnO composite particles. The TPSO based polyesteramide was reacted with 4,4′-diisocyanatodicyclohexylmethane in presence of siloxane modified ZnO to obtain –NCO terminated polyesteramide–urethane–silica ZnO prepolymer. These hybrid pre-polymers were casted on tin foil and cured under atmospheric moisture to obtain eco-friendly, moisture cured polyesteramide–urethanes–silica–zinc oxide hybrid coating films. The synthesized polyester and polyurethane formation was confirmed by using FT-IR and NMR spectroscopic techniques. The resultant hybrid coating films were characterized by using FT-IR, TGA, DSC, SEM, corrosion resistance and microbial resistance. Results confirm that with increase of siloxane modified ZnO content in the polyurethane matrix thermal stability, glass transition temperature and corrosion resistance improved. The antibacterial activity shows that the hybrid films exhibit excellent resistance towards Escherichia coli and Staphylococcus aureus. The salt spray test on coated panel samples show good corrosion resistance properties.  相似文献   

8.
Thermal spraying has been used to coat carbon steels (F112) and austenitic stainless steels (AISI 304) with aluminium matrix composites. Mixtures of aluminium powder and SiC particles were used as spraying material. A sol-gel silica coating was laid on SiC particles to reduce the porosity of the composite coatings and to inhibit the formation of aluminium carbide. The sol-gel silica coating acts as an active barrier enhancing the wettability of the reinforcement by molten aluminium. Coatings with a reinforcement volume fraction up to 30 vol.% were obtained with porosities of about 1.0 vol.%. The incorporation of sol-gel silica coated SiC particles reduces the coefficient of thermal expansion of the composite coating and enhances its adhesion to the substrates more than when uncoated SiC particles were used.  相似文献   

9.
利用溶胶-凝胶技术制备了不同SiO2 含量的二氧化硅/ 聚酰亚胺(SiO2 / PI) 纳米杂化薄膜。采用红外光谱( IR) 和扫描电镜(SEM) 手段对该体系的分子结构和断裂形貌进行了表征, 研究了聚酰亚胺薄膜室温和低温(77K) 力学性能。结果表明: 室温和低温(77 K) 下, SiO2 / PI 杂化薄膜的拉伸强度开始时均随SiO2 含量的增加而增加, 在含量为3 %时达到最大值, 低温下杂化薄膜的拉伸强度明显高于室温。室温下, 杂化薄膜的断裂伸长率在含量为3 %时达到最大值, 而低温(77 K) 下, 薄膜的断裂伸长率的变化没有呈现明显的规律性。   相似文献   

10.
《Materials Research Bulletin》2006,41(8):1424-1429
The preparation of silica coated iron particles with improved oxidation-resistance was described in the paper. XRD, TEM and XPS were used to characterize the product, which indicated that a thin film of silica was coated on the surface of Fe particles through a silica–oxide–iron bond. The content of silica to iron in the sample was quantitatively determined by ICP. Magnetic measurements results of the particles almost kept constant before and after coating process. DTA and TG results showed that the coating shell of silica could effectively protect the Fe cores from oxidation.  相似文献   

11.
曹旗  吴清仁  吴启坚  叶春瑜  赵韵  黄文峰  陈嘉 《材料导报》2011,25(10):92-95,109
以正硅酸乙酯(TEOS)为前驱体,采用溶胶-凝胶法制备SiO2气凝胶薄膜,并以不同体积分数的六甲基二硅胺烷(HMDZ)对SiO2气凝胶薄膜进行了疏水改性研究,采用椭偏仪、FITR、接触角测试仪、SEM和光谱仪等对薄膜的疏水性、微观结构及透光性进行了表征,研究了HMDZ疏水改性对SiO2气凝胶薄膜性能与结构的影响。结果表明,疏水改性后,SiO2胶粒表面的大部分亲水性-OH被疏水基团-CH3所取代,其与水的接触角达159°,疏水性好;SiO2气凝胶薄膜在可见光范围内透光率接近90%,透光性高;其孔隙率为78.8%,密度为0.464g/cm3,骨架颗粒尺寸小于40nm,具有纳米多孔网络结构特性。  相似文献   

12.
Silica-coated multiwalled carbon nanotubes (MWCNTs) have been prepared by the sol–gel polymerization of tetraethoxysilane (TEOS) in the presence of the acid-oxidized MWCNTs at room temperature, followed by oxidizing the MWCNTs templates at high temperature in air to produce hollow silica nanotubes. The thickness and architectures of silica shell were well controlled by rationally adjusting the concentration of TEOS, and by adding cationic surfactant as a structure-directing agent. These results also give a clear answer to prove the fact that the structures of spherical silica particles can be fully “copied” to the coating shell and the wall of silica nanotubes when prepared by the same method as the synthesis of silica particles in the presence of templates.  相似文献   

13.
Silica/ammonium persulfate (APS) microspheres were fabricated by coating APS on the surface of ~2 μm sized silica particles and applied as a candidate for electrorheological (ER) materials. The morphologies of these particles were observed by SEM. Chemical compositions and structure of the particles were confirmed by EDS and FT-IR. Thermogravimetric analysis was used to examine the amount of APS coating on the silica particles. A 10 vol% ER fluid based on the fabricated particles was prepared by dispersing them into hydroxyl group-terminated silicone oil. Typical ER properties were obtained using a rotational rheometer under an applied electric field at a controlled shear rate test. These properties were also correlated with its dielectric spectra.  相似文献   

14.
We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.  相似文献   

15.
Dilute solutions of cellulose, polypropylene, polyethylene, nylon and polyester were spun cast onto gold and silica wafers to generate thin films of these polymers, which are commonly used in the manufacture of synthetic fibers. The thin films were used as substrates in the quartz crystal microbalance and nano-indentation techniques to monitor adsorption and friction behaviors after treatment with a polymer solution (as a mimic of a textile finish). The spin coating conditions were optimized in terms of the resulting film morphology, thickness and surface energy. Atomic force microscopy, X-ray photoelectron spectrometry, ellipsometry and contact angle were used to probe the physical and surface properties of the resulting films. Overall, we developed thin films that are helpful to inquire, at the molecular level, phenomena relevant to fiber and textile processing including swelling, degradation, and adsorption of polymers and surfactants.  相似文献   

16.
大量制备磁热性能优异的磁性纳米粒子对磁热疗和组织复温的生物学应用具有理论价值.本研究通过高温电弧法制备FeNi磁性纳米颗粒,通过超声-沉降分级筛分得到平均粒径为80 nm的FeNi纳米颗粒,通过溶胶-凝胶法得到平均粒径为100 nm,SiO2壳层厚度为15~20 nm的FeNi@SiO2纳米复合粒子.超导量子干涉仪测定...  相似文献   

17.
Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology, respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite silica particles was obtained. The dual size particles are obtained by utilizing the graft of different modified silica particles with epoxy functional group and amine functional group, This makes the surface of film form a composite interface to have irregular binary structure which plays an essential role in trapping air between the substrate surface and the liquid droplets to be necessary for high contact angle and low contact angle hysteresis. The maximum contact angle for water on the hybrid film is about 174±2° and the contact angle hysteresis is less than 2°. The surface morphologies, roughness and the wettability on the surface of films containing different structural silica particles were compared. It was shown that the hierarchical irregularly structure with a low roughness factor and high air-trapped ratio is indispensable for superhydrophobic surface. Although this structural surfaces based on composite silica particles play a vital role in governing the surface wettability, it is necessary to combine with a low surface energy to make the surface superhydrophobic.  相似文献   

18.
Optical properties and in-depth structure of double-layer coatings on glass substrates were investigated. One of the layers was prepared by dip coating either from silica or titania sol, the other layer was made from ca. 130 nm Stöber silica particles by the Langmuir-Blodgett (LB) technique. Two different types of combined coatings were prepared: (1) nanoparticulate LB films coated with sol-gel (SG) films and (2) nanoparticulate LB films drawn onto SG films.Scanning electron microscopy and optical methods, i.e. UV-vis spectroscopy and scanning angle reflectometry were applied for analyzing the structure and thickness of coatings. These measurements revealed that the precursor sols could not penetrate into the particulate LB film completely in case of coating type (1). For coating type (2) very little overlap between the SG and LB layers was found resulting in significant improvement of light transmittance of combined coatings compared to single SG films.To show some possible advantages of the combination of these techniques additional studies were carried out. Surface morphology of combined coatings (1) was studied by atomic force microscopy. Surfaces with different roughness were developed depending on the thickness of the sol-gel film (titania: ca. 70 nm; silica: ca. 210 nm). The adhesive peel off test revealed improved mechanical stability of combined coatings (2), in comparison to LB films which makes them good candidates for further applications.  相似文献   

19.
The preparation of antimony doped tin oxide (ATO) conductive thin films on mica (muscovite) clays is described. ATO coating solution was prepared from ethylene glycol monomer, citric acid ligand, SbCl3 and SnCl2 precursors in alcohol solution. Muscovite thin film coating was prepared by gradual addition of the precursor solution to a water-muscovite clay dispersion. Under appropriate precursor concentrations and temperature, aggregation of the clays and ATO particles was prevented, and the ATO film grew exclusively on the clay substrate. Heat treatment of the coated mica resulted in semi transparent and conductive clays which could be used for composite film formation. Whereas the Pechini route is widely used for dip coating of ATO films, here we extend the approach for coating particulate matter. The films were characterized by electronic microscopy, X-ray photoelectron spectroscopy, powder diffraction, and thermal analysis and the dependence of conductivity on calcination temperature and precursor concentrations are described.  相似文献   

20.
Silica antireflective films modified by polyvinyl butyral (PVB) were deposited on fused silica substrates by sol-gel process. The effects of PVB on the microstructure and laser damage threshold (LIDT) of films were investigated. The results of the nano particle analyzer and scanning probe microscope revealed that PVB molecules surrounded silica particles and controlled the particle growth, which resulted in a stable sol with uniformly distributed silica particles. Therefore, the films deposited from these modified sols possessed more uniform microstructures than the films without PVB. The adhesive-resistance test indicated that the strength of the modified silica films increased due to the bond reaction between PVB molecules and silica particles. The introduction of PVB into silica sols had also increased the LIDT of films. The LIDT of films increased from 30.0 J/cm2 to 40.1 J/cm2 after 1.0 wt.% PVB was added. The increase in LIDT was attributed to the increased strength and uniform microstructures of films as an effect of the PVB modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号