共查询到20条相似文献,搜索用时 0 毫秒
1.
Thin TiO2 films on quartz substrates were prepared by spin coating of undoped and metal-ion-doped Sol-Gel precursors. These films were characterised by Scanning Electron Microscopy, Laser Raman Microspectroscopy, X-ray Diffraction and UV-Vis Transmission. The photocatalytic performances of the films were assessed by the photo-degradation of methylene-blue in aqueous solution under UV irradiation. Films exhibited a high degree of orientation and a thermal stabilization of the anatase phase as a result of substrate effects. In the absence of dopants, the rutile phase formed as parallel bands in the anatase which broadened as the transformation progressed. TiO2 films doped or co-doped with transition metals exhibited the formation of rutile in segregated clusters at temperatures under ~ 800 °C as a result of increased levels of oxygen vacancies. Photocatalytic activity of the films synthesised in this work was low as likely a result of poor TiO2 surface contact with dye molecules in the solution. The presence of transition metal dopants appears detrimental to photocatalytic activity while the performance of mixed phase films was not observed to differ significantly from single phase material. 相似文献
2.
Montri Aiempanakit Ulf HelmerssonAsim Aijaz Petter LarssonRoger Magnusson Jens JensenTomáš Kubart 《Surface & coatings technology》2011,205(20):4828-4831
The effect of peak power in a high power impulse magnetron sputtering (HiPIMS) reactive deposition of TiO2 films has been studied with respect to the deposition rate and coating properties. With increasing peak power not only the ionization of the sputtered material increases but also their energy. In order to correlate the variation in the ion energy distributions with the film properties, the phase composition, density and optical properties of the films grown with different HiPIMS-parameters have been investigated and compared to a film grown using direct current magnetron sputtering (DCMS). All experiments were performed for constant average power and pulse on time (100 W and 35 μs, respectively), different peak powers were achieved by varying the frequency of pulsing. Ion energy distributions for Ti and O and its dependence on the process conditions have been studied. It was found that films with the highest density and highest refractive index were grown under moderate HiPIMS conditions (moderate peak powers) resulting in only a small loss in mass-deposition rate compared to DCMS. It was further found that TiO2 films with anatase and rutile phases can be grown at room temperature without substrate heating and without post-deposition annealing. 相似文献
3.
Jintao Tian Jianfei Wang Jinhui Dai Xin Wang Yansheng Yin 《Surface & coatings technology》2009,204(5):723-730
The N-doped TiO2/ZnO composite powder with a molar ratio of Ti to Zn of 3/1 was prepared via sol–gel process and then ammonia treated with NH3 mass fractions of 0%, 7%, and 28% for 24 h at room temperature followed by thermal calcinations in air for 2 h at various temperatures of 500, 600, and 700 °C. The as-prepared composite powder was characterized in detail through thermo-gravimetric analyzer, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The results showed that the phase transformation of anatase to rutile has been successfully retarded via the ammonia treating process, leading to the presence of anatase phase in the composite. The particle crystallization of the composite powder was significantly promoted with the increase of the calcining temperature. The photocatalysis evaluation through MO degradation revealed an enhanced photocatalytic activity for the composite powder that might be related to the good crystallization, the presence of anatase phase, and the particle size reduction of the powder. 相似文献
4.
Quoc Minh Pham Dinh Hai Pham Jae-Seong Kim Eui Jung Kim Sunwook Kim 《Synthetic Metals》2009,159(19-20):2141-2146
Polyaniline–titanium dioxide (PANI–TiO2) hybrid materials were synthesized in supercritical CO2 using two different methods. In the first method, separately synthesized TiO2 particles were mixed with aniline to perform polymerization in supercritical CO2. The second method included the preparation of aniline–TiO2 hybrids through a sol–gel reaction of titanium isopropoxide in the presence of aniline. Further polymerization of aniline–TiO2 hybrids in supercritical CO2 produced PANI–TiO2 hybrid particles. The final products showed the intrusion of PANI into the internal structure of TiO2. The PANI–TiO2 hybrid materials were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), electrical conductivity (EC), Fourier-transform infrared (FT-IR) and X-ray diffraction (XRD) measurements. PANI–TiO2 nano-composites synthesized with the first method showed a relatively low electrical conductivity of 3.78 × 10−2 S/cm at 20 °C. TGA suggested that the particles contained 40.6% TiO2 by mass and showed a strong interaction at the interface of TiO2 and PANI. The electrical conductivity of the hybrid particles produced using the second method increased to 7.75 × 10−2 S/cm and the TGA results showed 34.4% TiO2 by mass. Through SEM and TEM analyses it was confirmed that the PANI has been interpenetrated into the three-dimensional network of the TiO2 when the second method was used. 相似文献
5.
Comparative study on the photocatalytic behaviour of titanium oxide thermal sprayed coatings from powders and suspensions 总被引:2,自引:0,他引:2
F.-L. Toma L.M. Berger D. Wicky Y.R. de Miguel 《Surface & coatings technology》2009,203(15):2150-2156
This work presents a study of the microstructures and photocatalytic behaviour of titanium oxide coatings obtained by thermal spraying of agglomerated nanopowders and suspensions. Fine TiO2 Degussa P25 nanopowder, generally considered as the reference material in photocatalytic applications, was used as the material feedstock. HVOF process and suspension thermal spraying were used to prepare photocatalytic titania coatings. The coatings were mainly characterised by means of SEM and X-ray diffraction. The photocatalytic performance was evaluated based on decolouration of the pink dye Rhodamine B and degradation of gaseous acetaldehyde. A lower degree of pollutant degradation was found for deposits prepared by HVOF spraying of granules due principally to the low content of the photocatalytically active phase, i.e. anatase. Complete photocatalytic degradation of the organic compounds was recorded for the suspension-sprayed coatings. Based on the current results, suspension thermal spraying appears to be the better choice for preparing photocatalytically active titanium oxide surfaces for the removal of organic pollutants. 相似文献
6.
L. Bamoulid F. Benoît-Marquié A. Guenbour M.-T. Maurette S. El Hajjaji 《Surface & coatings technology》2006,201(6):2791-2795
In this study, the formation and characterization of conversion coatings modified by a sol-gel TiO2 deposit were investigated as a way to develop a new photocatalyst for water and air depollution. The conversion coating, characterised by strong interfacial adhesion, high roughness and high surface area facilitates the sol-gel deposition of titania and enhances its adhesion to the substrate. The conversion treatment is carried out in an acid solution. Observation by Scanning Electron Microscopy (SEM) reveals a rough surface with pores and cavities. According to SIMS measurements, the thickness of the initial conversion layer is evaluated at about 1.5 μm. On this pre-functionalised support, the titanium dioxide was deposited by the sol-gel method. The roughness measurements coupled with SIMS analysis allowed a precise evaluation of the surface state of the final layers. The coating consists of two layers: a TiO2 outer layer and an inner layer containing iron chromium oxides. Characterization by X-ray diffraction (XRD) showed the existence of the TiO2 anatase structure as the main compound. 相似文献
7.
使用产量与性能稳定的工业化生产的黑色二氧化钛制备成QDSSCs的光阳极,通过性能表征与理论计算研究,与常见的Anatase TiO2,Rutile TiO2展开了全面对比。结果表明,由于氧空位的引入导致Magonelli Ti8O15的导带底下降,带隙收缩,吸收光谱范围由紫外光扩展至可见光与近红外,而且吸光度也极大提高。其阻抗也随之减小,明显低于Anatase TiO2,Rutile TiO2。这导致其组装的QDSSCs的性能获得极大提升,尤其是FF与Jsc表现最为显著,最终获得了PCE 5.3%优异成绩。这项工作进一步丰富了黑色二氧化钛的研究,在工业化生产黑色二氧化钛组装太阳能电池领域取得了阶段性成果,为太阳能电池的生产提供了新的可能。 相似文献
8.
Amorphous columnar TiO2 films were synthesised by reactive sputtering on cold soda–lime glass substrates (TiO2/glass films). The films were subsequently heated in order to crystallise the photoactive anatase phase. The surface chemical composition assessment demonstrates the occurrence of metallic Na, the amount of which increases with the annealing temperature. The evolution of the structural, microstructural and photocatalytic properties of the films with the annealing temperature was investigated and compared to that of TiO2 films deposited in same conditions, but on glass pre-coated with a SiNx diffusion barrier (TiO2/SiNx/glass films). Once crystallised, both series of TiO2 films exhibit [001] preferential orientation corresponding to the columnar growth. Grain coalescence associated to a modification of the grain shape is only observed in TiO2/glass films for annealing temperatures higher than 450 °C, whereas neither microstructural nor structural change is observed in TiO2/SiNx/glass films. The Na-contaminated TiO2 films exhibit different photocatalytic behaviour with the annealing temperature compared to the Na-free TiO2 films. A discussion is finally based on these differences. 相似文献
9.
Amphiphilic TiO2 nanotube arrays (TiO2 NTs) were fabricated through electrochemical oxidation of Ti in solution containing H3PO4 and NaF. Scanning electron microscopic analysis shows that the as-prepared TiO2 NTs have an average pore diameter of 100 nm and a wall thickness of 15 nm. The electrochemical oxidation of Ti can be divided into four stages. In the first stage, when the potential is very low, oxygen formation and Ti dissolution are the major reactions. The second stage corresponds to a slightly higher potential, but less than 2.5 V. In this stage, the formation of TiO2 film occurs. When the potential is increased to the even higher range from 2.5 V to 6 V, the TiO2 film dissolves and nanoporous surface structure is generated. This is the third stage. Further increase of the potential enters stage four. The high potentials cause the self-organization of the nanostructure and allow the formation of well-aligned TiO2 NTs. We also found that the change in surface condition of Ti by annealing heat treatment affects the film dissolution kinetics. As compared with TiO2 thin film, the TiO2 NTs show higher photocatalytic activity on decomposing Rhodamine B. The surface of the TiO2 NTs can be wetted by both water and oil. Such an amphiphilic property comes from the capillary effect of the nanochannel structure of the TiO2 NTs. Because of the amphiphilic property and the photocatalytic activity, we conclude that the TiO2 NTs have the capability of self-cleaning. 相似文献
10.
Horng-Yi Chang Wei-Jei TzengChia-Hsin Lin Syh-Yuh Cheng 《Journal of Alloys and Compounds》2011,509(35):8700-8706
This study investigates using an inorganic photosensitive CuInS2 (CIS) coating instead of an organic dye on TiO2 nanotube arrays (TNAs). The stoichiometric characteristics by use of various deposition parameters such as precursor concentrations (0.1 M, 0.05 M, and 0.01 M) and deposition cycles (1-60 cycles) are then analyzed in relation to the crystallinity and photosensitivity. TNAs are synthesized by anodic oxidation of Ti metal, modified by the TiO2 film, and are subsequently annealed at 450 °C for 30 min, producing what are named T-TNAs. They show high photocatalytic efficiency and photosensitivity under UV-illumination. The photosensitive CIS coatings on the T-TNAs are processed by an ionic compounds lamination reaction (ICLR) method. The more immersion cycles and the higher the precursor concentration of copper sulfide, the more CIS peeled off as precipitates formed, which result in less indium sulfide deposition being required for reacting with the copper sulfide to reach stoichiometry. Near stoichiometric CIS can be obtained by controlling the precursor concentration and deposition cycles of the ICLR process. Good crystallinity and n-type characteristics are achieved by controlling the precursor concentrations and deposition cycles suitably to obtain a high current density. When the Cu/In ratio is adjusted for n-type characteristics, the current density reaches at least 300 μA/cm2 under visible light illumination intensity of 100 mW/cm2. 相似文献
11.
L. Bamoulid D. De Caro A. Ben Bachir S. El Hajjaji F. Ansart 《Surface & coatings technology》2008,202(20):5020-5026
In the present work, a novel process has been developed to improve the corrosion properties of ferritic stainless steels. Titanium oxide coatings have been deposited onto stainless steel by sol-gel process after a pre-functionalization of the substrate in a conversion bath. Gel titania was prepared by hydrolysis of a titanium butoxide through a sol-gel process. Duplex systems “conversion layer/uniform TiO2 coating” have been prepared on stainless steels using a dipping technique and thermal post-treatments at 450 °C. The preparation of sol-gel coatings with specific chemical functions offers tailoring of their structure, texture and thickness and allows the fabrication of large coatings. The morphology and structure of the coatings were analysed using scanning electron microscopy with field effect gun (SEM-FEG), Mass spectroscopy of secondary ions (SIMS) and X-ray diffraction (XRD). The anticorrosion performances and the ageing effects of the coatings have been evaluated in neutral and aggressive media by using several normalized tests.The results show that the conversion layer was not sufficient to protect steel but sol-gel TiO2 coatings, anchored on the metal substrate via the conversion layer, show good adhesion with the substrate and act as a very efficient protective barrier against corrosion. So, duplex layers with TiO2 nanoparticle coatings on steels exhibit an excellent corrosion resistance due to a ceramic protective barrier on metal surface. Analysis of the data indicates that the films act as geometric blocking layers against exposure to the corrosive media and increase drastically the lifetime of the substrate. 相似文献
12.
Mengqiong YuanJing Zhang Song YanGenxiang Luo Qian XuXiang Wang Can Li 《Journal of Alloys and Compounds》2011,509(21):6227-6235
TiO2 modified with Nd2O3 (Nd-TiO2) nanoparticles were prepared by a co-precipitation method and utilized as the photocatalysts for the degradation of Rhodamine B (RhB). The influence of Nd2O3 on the bulk and surface phase, surface area, particle size, and optical response of TiO2 was investigated by X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), BET, and UV-visible diffuse reflectance spectra. It is found that the crystalline phase and phase composition in the bulk and surface region of Nd-TiO2 calcined at high temperatures can be tuned by changing the amount of Nd2O3. Based on the results from XPS, EDX, XRD, and UV Raman spectra, it is assumed that Nd3+ ions do not enter the TiO2 lattice, but highly disperse onto the Nd-TiO2 particle surface in the form of Nd2O3 crystallites. These crystallites inhibit the agglomeration, growth in crystal size, and anatase-to-rutile phase transformation of TiO2. In the photocatalytic degradation of RhB reaction, Nd-TiO2 nanoparticles with higher surface area and wider optical response are more reactive in case of the same surface anatase phase. When the mixed phases of anatase and rutile exist in the surface region of Nd-TiO2, the synergetic effect over surface area and optical response is the important parameter which determines optimal photocatalytic activity. 相似文献
13.
Baek-Hee Lee Tadachika Nakayama Yoshinori TokoiTsuneo Suzuki Koichi Niihara 《Journal of Alloys and Compounds》2011,509(4):1231-1235
A new synthesis process, laser ablation in an aqueous solution of target material, was applied to synthesize nanostructured CeO2/TiO2 catalyst particles. Reactivity within the laser plume (plasma) can be used to synthesize CeO2 from an aqueous solution, 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution, and to fabricate TiO2 from Ti target. CeO2/TiO2 nanoparticles were successfully synthesized by the laser ablation of Ti target in 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution. Laser ablation of Ti in a liquid environment and chemical reactions of the solution within a plasma plume are discussed. 相似文献
14.
In this work, the anticorrosion properties of phenyl trimethoxysilane (PTMS) films coated on aluminium 5000 series alloys were studied. PTMS films were deposited at various cathodic potentials. The optimum electrodeposition potential was found to be ?0.8?V vs. SCE. The coatings were also modified by different amounts of nano-TiO2. In order to introduce corrosion inhibition and a self-repair property of the PTMS film, the addition of chromium (III) corrosion inhibitor in the presence of nano-TiO2 was studied. The anticorrosion performance of coatings was investigated in a 3.5 wt.% NaCl solution. At optimum deposition potential, the ‘critical’ nano-TiO2 and Cr(III) contents were both observed, under which the obtained PTMS coatings show the highest anticorrosion performance. The surface morphologies of PTMS coatings were examined by scanning electron microscopy. The results showed that the coatings deposited at ?0.8?V vs. SCE, from 20?ppm of nano-TiO2 and 0.003 M Cr(III) inhibitor present uniform and compact morphologies. 相似文献
15.
B. Gaković B. Radak C. Radu M. Zamfirescu M. Trtica S. Petrović J. Stašić P. Panjan I.N. Mihailescu 《Surface & coatings technology》2012
We studied surface modification of a double layer protective coating on steel induced by single fs laser pulse irradiation in ambient air. The outer alumina (Al2O3) layer, which protects against aggressive environments, was 1.7 μm thick and the titanium aluminum nitride (TiAlN) layer in contact with the steel surface had a thickness of 1.9 μm. The pulses (λ = 775 nm, τ = 200 fs) were generated by a Ti:sapphire laser source. The pulse energy was varied from 0.32 μJ to 50 μJ, corresponding to an incident laser fluence of 0.11 J cm− 2 to 16.47 J cm− 2. The surface damage threshold was found to be 0.20 J cm− 2 and the alumina layer removal was initiated at 0.56 J cm− 2. This selective ablation of alumina was possible in a wide range of fluences, up to the maximum applied, without ablating the TiAlN layer beneath. 相似文献
16.
Lichao JiaCongcong Wu Song HanNian Yao Yuanyuan LiZongbao Li Bo Chi Jian PuLi Jian 《Journal of Alloys and Compounds》2011,509(20):6067-6071
Electronic and optical properties of pure, N-doped, Fe-doped and (N, Fe)-codoped anatase TiO2 were evaluated, respectively, by using the density functional theory. The results indicate that the elemental doping narrows the band gap of TiO2 and realize its visible-light response activity; and incorporation of Fe into N-doped TiO2 further increases the photocatalytic activity under visible-light irradiation compared with that of the N-doped TiO2. 相似文献
17.
Jinjing Du Yihan LiuGuangchun Yao Xiuli LongGuoyin Zu Jia Ma 《Journal of Alloys and Compounds》2012,510(1):87-91
The samples with small amounts of MnO2 (0, 0.5, 1.0, 1.5, 2.0, and 2.5 wt%, respectively) were prepared via ball-milling process and two-step sintering process from commercial powders (i.e. Fe2O3, NiO and MnO2). Microstructural features, phase transformation, sintering behavior and magnetic properties of Mn-doped NiFe2O4 composite ceramics have been investigated by means of scanning electron microscopy (SEM), differential thermal analyzer, X-ray diffraction (XRD), thermal dilatometer and vibrating sample magnetometer (VSM) respectively. The XRD analysis and the result of differential thermal analysis indicate that the reduction of MnO2 into Mn2O3 and the following reduction of Mn2O3 into MnO existed in sintering process. No new phases are detected in the ceramic matrix, the crystalline structure of the ceramic matrix is still NiFe2O4 spinel structure. Morphology and the detecting result of thermal dilatometer show that MnO2 can promote the sintering process, the temperature for 1 wt% MnO2-doped samples to reach the maximum shrinkage rate is 59 °C lower than that of un-doped samples. For 1 wt% MnO2-doped samples, the value of the saturation magnetization (Ms) and coercivity (Hc) is 15.673 emu/g and 48.316 Oe respectively. 相似文献
18.
Jun HeLin Sun Shiyou ChenYe Chen Pingxiong YangJunhao Chu 《Journal of Alloys and Compounds》2012,511(1):129-132
The evolution of structure and optical properties of Cu2ZnSn (SxSe1−x)4 (CZTSSe) solid solutions in a wide composition range (0 ≤ x ≤ 1) has not been fully elucidated. We have performed comprehensive characterization on the CZTSSe powders with different S/Se ratios, which were synthesized by the solid state reaction method. X-ray diffraction patterns demonstrate that the lattice parameters a and c of CZTSSe decrease lineally when S replace Se gradually, which obeys the Vegard's rule. The A1 Raman modes of CZTSSe show a typical two-mode behavior. The absorption spectra reveal that the band gap of CZTSSe can be tuned monotonously between 0.96 and 1.5 eV with almost linearity, and a small band gap bowing constant (b ≈ 0.08 eV) is deduced. 相似文献
19.
The pesting behavior of MoSi2 and Mo(Si,Al)2 has been examined in air at 773 K to clarify the origin and mechanism of pesting phenomena and the effect of aluminum on pesting phenomena. The initial cracks play a much more important role than the grain boundaries and the initial oxide layer in pesting. Mo and Si oxidize to amorphous Mo-Si-O simultaneously with about a 200% volume expansion. Therefore, large stress appears at the cracktips and induce many new cracks. MoO3 vaporizes from the Mo-Si-O layer on the external surface and crack surfaces causing the oxides in the initial cracks to become porous. Oxygen has a short-circuit path to enter the sample in the cracks. Therefore, the partial pressure of oxygen is sufficiently high to allow oxidation of Mo in the materials. The platelet-like MoO3 grows on the external surface and also in the cracks. Finally, the sample distintegrates into powder. Pesting of Mo(Si,Al)2 occurs in the same way, however, its rate is much lower than that of MoSi2. The role of Al is to decrease the initial crack density of the samples from the melt. Other effects of Al might be to decrease the oxygen flux toward the oxide-intermetallic interface and to increase the plasticity of the amorphous oxide being formed in the cracks. 相似文献
20.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively. 相似文献