首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on magnetisation, resistivity and specific heat measurements of R2Pd2In compounds synthesised with the nominal composition R40Pd41In19 (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y). Magnetic and thermodynamic measurements reveal antiferromagnetic order below 32 K for this series except for Y, La, Yb and Lu. An appreciably wide homogeneity range is found for Ce2Pd2+xIn1−x where ferro- or antiferromagnetic order or both occur with typical features of a Kondo lattice. Yb2Pd2In exhibits intermediate valent behaviour and no magnetic order could be detected down to 0.3 K.  相似文献   

2.
The title compounds were prepared from the elemental components by arc-melting and subsequent annealing at 1020 K and 1170 K. Both CePd0.63Ge1.37 and CeAu0.75Ge1.25 crystallize in the AlB2 structure type with a statistical distribution of the transition metal and germanium atoms on the boron site. The structure of CeAu0.75Ge1.25 was refined from single crystal X-ray data: P6/mmm, a=433.5(1) pm, c=422.6(1) pm, V=0.0688(1) nm3, Z=1, wR2=0.0504 for 157 F2 values and 7 variables. Magnetic susceptibility data for both compounds show a full cerium moment and ferromagnetic ordering at 6.0(5) K for CeAu0.75Ge1.25 and 3.0(5) K for CePd0.63Ge1.37. The crystal structure and properties of CeAu0.75Ge1.25 are compared with those of equiatomic CeAuGe which adopts the NdPtSb structure type, an ordered variant of AlB2.  相似文献   

3.
Magnetic properties of TbFe2, DyFe2, Tb(Fe0.8M0.2)2 and Dy(Fe0.8M0.2)2 with M=Co, Al, Si, Ga alloys affected by the Hydrogenation-Decomposition-Desorption-Recombination processing have been studied. After hydrogen treatment the coercive force Hc grows sharply, so HDDR-powders can be used as isotropic permanent magnets with the energy product up to 26 MG Oe at T=77 K. In Dy(Fe0.8Al0.2)2 at T<10 K the stepwise magnetic reversal has been observed. The HDDR-treatment increases the critical field of magnetic reversal from 11 up to 18.4 kOe at 4.2 K. It is shown that the effect of the stepwise magnetic reversal is caused by a heat release in a sample during an avalanche motion of narrow domain walls.  相似文献   

4.
Ho3Pd4Ge4 crystallizes in the orthorhombic Gd6Cu8Ce8-type of structure (space group Immm) in which the Ho atoms occupy two nonequivalent crystallographic positions: 2a and 4j. Neutron diffraction measurements indicate that the Ho moments in the 4j site below 6.7 K form a collinear antiferromagnetic structure with the magnetic moments parallel to the a axis, whereas the Ho moments in the 2a site below 5 K form a sine-wave modulated structure with the magnetic moments parallel to the c axis.  相似文献   

5.
The paper is focusing on the modification of the crystal lattice upon the hydrogenation of La2Pd2In and hydrogen desorption from La2Pd2In hydrides. The synthesis at 1 bar of hydrogen produces a crystalline hydride with 1.5 H atoms per formula unit and the volume expansion of ΔV/V = 6.0%. The synthesis at 10 and 100 bar H2 pressures leads to an amorphous state and with 4 + δ H atoms/f.u. The uptake of hydrogen leads to the decrease of the Debye temperature of La2Pd2In and modification of the optical phonon spectrum.  相似文献   

6.
Five novel cerium-based ternaries Ce2Rh3.1Si0.9, Ce4Rh12Si, Ce8Rh21.9Si3.1, CeRh1.82Si0.18 and CeRh3Si0.125 were studied by means of magnetic susceptibility and electrical resistivity measurements. All these phases were found to be Pauli paramagnets with metallic type of electrical conductivity.  相似文献   

7.
The ErAuxNi1−xIn (0 ≤ x ≤ 1) quasiternary compounds crystallize in the hexagonal layered crystal structure of ZrNiAl-type. ErAuIn was reported to be an antiferromagnet with TN = 3 K and magnetic moments having triangular arrangement within the basal plane (the magnetic order is described by the propagation vector ). On the contrary ErNiIn is a ferromagnet with TC = 9 K and magnetic moments pointing along the c-axis. The magnetic ordering in ErAuxNi1−xIn (0 < x < 1) solid solution, has been investigated by neutron diffractometry in the temperature range between 1.5 and 15 K. Moreover, bulk magnetic measurements have been carried out in the range 1.72–400 K. All alloys of intermediate composition were found to be antiferromagnets with TN between 4.6 and 7 K. Below 2 K their magnetic order is described by the propagation vector and magnetic moments are aligned along the c-axis. However, for alloys with 0.2 ≤ x ≤ 0.7 the propagation vector was found to turn into with increasing temperature.  相似文献   

8.
High density polycrystalline CaCd2Sb2 and EuCd2Sb2 intermetallics are synthesized by Spark Plasma Sintering and their thermoelectric properties are investigated. X-ray diffraction measurements reveal both materials have a structure in space group, containing a small amount of CdSb as a second phase. Thermoelectric measurements indicate both are p-type conductive materials. The figure of merit value of CaCd2Sb2 is 0.04 at 600 K and that of EuCd2Sb2 is 0.60 at 617 K. Theoretical calculations show that CaCd2Sb2 is a degenerate semiconductor with a band gap of 0.63 eV, while EuCd2Sb2 is metallic with DOS of 13.02 electrons/eV. For deeper understanding of the better thermoelectric properties of EuCd2Sb2, its low temperature magnetic, transport and heat capacity properties are investigated. Its Nèel temperature is 7.22 K, convinced by heat capacity anomaly at 7.13 K. Hall effect convinced that it is a p-type conductive material. It has high Hall coefficient, high carrier concentration and high carrier mobility of +1.426 cm3/C, 4.38 × 1018/cm3 and 182.40 cm2/Vs, respectively. They are all in the magnitude of good thermoelectric materials. The Eu 4f level around Fermi energy and antiferromagnetic order may count for the better thermoelectric properties of EuCd2Sb2 than that of CaCd2Sb2.  相似文献   

9.
10.
Magnetic and electrical properties of the RCu5.1In6.9 compounds with R=Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er were investigated in the temperature range 4.2–300 K. Additionally, for the compounds of Gd, Tb and Dy exhibiting magnetic anomalies at low temperatures, the magnetization versus magnetic field up to 14 T was measured at 4.2 K. Investigated compounds follow the Curie–Weiss law with relatively small values of the paramagnetic Curie temperature and the values of effective magnetic moment being in fair agreement with the values for the free ions. The electrical resistivity exhibits metallic character. The results are discussed in terms of the differences and similarities with other rare earth intermetallics.  相似文献   

11.
Experimental results of the single-crystal X-ray diffraction, XPS, ac-magnetic susceptibility (ac-χ), dc-magnetization M(T), and electrical resistivity (ρ) measurements for the hexagonal Th7Fe3-type Gd5Y2Pd3 single crystal are presented. Anomalies in (ac-χ), (T) and M(T)-curves have allowed to establish that Gd5Y2Pd3 undergoes a long-range ferromagnetic-type ordering at TC = 263 K, followed by a spin-reorientation below 190 K. The magnetization data indicate that there is an excess of the magnetic moment for the Gd3+ ions. The observed XPS, magnetic and electrical resistivity behaviour points to the coexistence of localized magnetism from the magnetic Gd3+ ions and itinerant ferromagnetism from 4d- and 5d-electron bands. We discuss the magnetic behaviour of the Gd7−xYxPd3 solid solutions in terms of three competitive mechanisms: RKKY-interaction, magnetic frustration and spin-fluctuation.  相似文献   

12.
A neutron diffraction investigation has been carried out on the trigonal La2O3-type (hP5, space group , No. 164; also CaAl2Si2-type) YbMn2Sb2 intermetallic. A two-step synthesis route has been tried in this work, and successfully utilised to prepare single phase samples of this compound. This study shows that YbMn2Sb2 presents antiferromagnetic ordering below 120 K. The magnetic structure of this intermetallic consists of antiferromagnetically coupled magnetic moments of the manganese atoms, in the Mn1 (1/3, 2/3, ZMn) and Mn2 (2/3, 1/3, 1 − ZMn) sites; the direction of magnetic moments of manganese atoms forming a φ and a θ angle, respectively with the X- and the Z-axis. At 4 K the magnetic moment of the Mn1 atom is μMn = 3.6(1) μB, with φ = 0° and θ = 62(4)°, whilst the Mn2 atom has a magnetic moment μMn = 3.6(1) μB, with φ = 0° and θ = 242(4)°. On the other hand, in this compound no local moment was detected on the Yb site.  相似文献   

13.
A new series of R2PdIn8 intermetallics, where R = Pr, Nd, and Sm, was prepared by arc-melting the constituents under argon atmosphere and studied by means of X-ray diffraction and magnetic measurements. The compounds crystallize with a tetragonal structure of the Ho2CoGa8 type (space group P4/mmm). At very low temperatures, they order antiferromagnetically, and the Nd-based indide presumably exhibits an additional magnetic phase transition in the ordered region.  相似文献   

14.
Neutron diffraction and magnetization measurements have been performed on the Tb5Si3 compound (hexagonal Mn5Si3-type, hP16, P63/mcm) to understand its magnetic structure and magnetic properties. The temperature-dependent neutron diffraction results prove that this intermetallic phase shows a complex flat spiral magnetic ordering, presenting three subsequent changes in magnetization at on cooling. However, the magnetization data depict two transitions at 72 K (TN1) and 55 K (TN2). The extended temperature range between and over which the neutron diffraction patterns slowly evolve might correspond to the high-temperature antiferromagnetic transition at TN1 and low-temperature antiferromagnetic transition at TN2 of the magnetic data. Between Tb5Si3 shows a flat spiral antiferromagnetic ordering with a propagation vector K1 = [0,0, ±1/4]; then, between the flat spiral type ordering is conserved, but by two coexisting propagation vectors K1 = [0,0, ±1/4] and K2 = [0,0, ±0.4644(3)]. The terbium magnetic moments arrange in the XY(ab) plane of the unit cell. Below the magnetic component with K1 = [0,0, ±1/4] vanishes and magnetic structure of Tb5Si3 is a flat spiral with K2 = [0,0, ±0.4644(3)], only. Low field magnetization measurements confirm the occurrence of complex, multiple magnetic transitions. The field dependence of the magnetization indicates a metamagnetic transition at a critical field of 3 T.  相似文献   

15.
In this work we have investigated (Fe3Ga/TbFe2)n multilayers grown by sputtering at room temperature. These multilayers exhibit a large coercivity associated to the crystalline TbFe2 Laves phase. To reduce the coercivity it is necessary to control the crystallization of that material. In this work, we focus on the analysis of the properties of the TbFe2 layers. In the as-grown heterostructures we have found evidence of nanoaggregates in the TbFe2 layers. The Fe3Ga thickness and the thermal treatments have an influence on the volume of these nanoprecipitates. In the annealed samples, when increasing the Fe3Ga thickness we observe a decrease in the nanoaggregate volume and thus in the coercivity. The experimental results indicate that the crystallization of the TbFe2 depends on the Tb diffusion promoted by the thermal treatment and on the stiffness factor (Y/α) of the Fe3Ga layer. The magnetostrictive properties are also strongly influenced by the crystallization of the TbFe2. We have achieved a maximum magnetostriction constant of nearly 550 ppm with a coercive field close to 400 Oe.  相似文献   

16.
Ferrites have been studied for several years due to their wide use as magnetic materials for telecommunications, audio and video, power transformers and many other applications.

Equimolar mixtures of Fe2O3 and TiO2 were fired in a muffle furnace at 1200 °C for 4 h. Mixed samples were prepared by replacing TiO2 with calculated amounts of CuO (x = 0.2, 0.4, 0.6, 0.8 and 1 mol). The synthesized samples were characterized with X-ray diffraction and their magnetic properties were measured using vibrating-sample magnetometer. The microstructure of the sample was examined using reflected light microscope and scanning electron microscope. The formation of Fe2TiO5, Fe5CuO8, Cu2TiO3 and CuFeO2 phases were detected whereas their magnetic properties increased with increasing the added mole ratio of Cu2+ ions. The isothermal reduction kinetics of synthesized nanocrystallites Ti–Cu mixed ferrite compacts were studied at 500 °C using hydrogen gas. It was found that the reduction rate and the reduction extent increased with increasing the extent of Cu2+ (0.2–1) whereas the maximum reduction extent (100%) was detected for pure Cu ferrite (Cu2+) while the minimum reduction extent (12%) was detected for pure iron titanate (Cu2+ = 0). The magnetic properties showed a drastic improvement upon reduction with hydrogen gas.  相似文献   


17.
Z-type hexaferrites doped with Nd3+, Ba3−xNdxCo2Fe24O41 (x = 0, 0.05, 0.10, 0.15, and 0.25), were prepared by solid-state reaction. The effect of the Nd3+ ions substitution for Ba2+ ions on the microstructure and electromagnetic properties of the samples was investigated. The results reveal that an important modification of microstructure, complex permeability, complex permittivity, and static magnetic properties can be obtained by introducing a relatively small amount of Nd3+ instead of Ba2+. SEM image shows that the grains of the ferrites doped with Nd3+ were smaller, more perfect and homogeneous than that of the pure ferrite. The real part (?′) of complex permittivity and imaginary part (?″) increase at first, and then decrease with increasing Nd content. At low frequency, the imaginary part μ″ of complex permeability decreases with Nd content and then increases when frequency is above 7.0 GHz. The magnetization (Ms) and the coercivity (Hc) are 79.38 emu g−1 and 36.94 Oe for Ba2.75Nd0.25Co2Fe24O41. The data of magnetism show that the ferrite doped with Nd3+ ions is a better soft magnetic material due to the higher magnetization and lower coercivity.  相似文献   

18.
The rare earth-rich compounds Ce23Ru7Cd4 and Pr23Ru7Cd4 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. Both structures were refined on the basis of diffractometer data: P63mc, Z = 2, a = 988.7(3), c = 2241.6(5) pm, wR2 = 0.0439, 1976 F2 values for Ce23Ru7Cd4 and a = 992.7(2), c = 2236.4(7) pm, wR2 = 0.0466, 2528 F2 values for Pr23Ru7Cd4 with 74 variables per refinement. Striking structural motifs are ruthenium centered trigonal prisms RuCe6 and RuPr6 which are condensed via common edges and corners, building rigid three-dimensional networks. Larger voids within these networks are filled by slightly elongated Cd4 tetrahedra. Five of the nine crystallographically independent cerium sites in Ce23Ru7Cd4 show Ce–Ru distances which are shorter than the Pr–Ru distances in Pr23Ru7Cd4. This strong hint for mixed cerium valence is supported by the magnetic behavior. Pr23Ru7Cd4 shows Curie–Weiss behavior above 50 K with an experimental magnetic moment of 3.62 μB/Pr atom, indicating stable trivalent praseodymium. Complex magnetic ordering sets in at 13 K. Ce23Ru7Cd4 shows a reduced magnetic moment of 2.05 μB/Ce atom. The trivalent cerium atoms show ferro- or ferrimagnetic ordering below TC = 3.6 K.  相似文献   

19.
The Nd11Pd4In9 compound was prepared by arc melting of pure metals under an argon atmosphere. Crystal structure was refined from X-ray single crystal diffractometer data (space group Cmmm, a = 14.843(3), b = 22.284(3), c = 3.7857(6) Å, Z = 2, RI = 0.0584, 653 F2 values). It has own structure type and together with Mn2AlB2, Cr3AlB4, Mo2FeB2 and Lu5Ni2In4 structure types belongs to homological series based on AlB2 and CsCl structure types with common formula Rm+nM2nXm.  相似文献   

20.
A.c. susceptibility and magnetization measurements of CAg2Ge2 are reported. Two phase transitions at T = 7 and 11 K are detected. The magnetization curve at T = 4.2 K has a two-step character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号