首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose an effective procedure, the first one to our knowledge, for translating a proof term of the Calculus of Inductive Constructions (CIC), into a tactical expression of the high-level specification language of a CIC-based proof assistant like coq (Coq development team 2008) or matita (Asperti et al., J Autom Reason 39:109–139, 2007). This procedure, which should not be considered definitive at its present stage, is intended for translating the logical representation of a proof coming from any source, i.e. from a digital library or from another proof development system, into an equivalent proof presented in the proof assistant’s editable high-level format. To testify to effectiveness of our procedure, we report on its implementation in matita and on the translation of a significant set of proofs (Guidi, ACM Trans Comput Log 2009) from their logical representation as coq 7.3.1 (Coq development team 2002) CIC proof terms to their high-level representation as tactical expressions of matita’s user interface language.  相似文献   

2.
3.
Teachers and students face many challenges in shifting from traditional classroom cultures to enacting the Knowledge-Building Communities model (KBC model) supported by the CSCL environment, Knowledge Forum (Bereiter, 2002; Bereiter & Scardamalia, 1993; Scardamalia, 2002; Scardamalia & Bereiter, 2006). Enacting the model involves socializing students into knowledge work, similar to disciplinary communities. A useful construct in the field of the Learning Sciences for understanding knowledge work is “epistemic games” (Collins & Ferguson, 1993; Morrison & Collins 1995; Perkins, 1997). We propose that a powerful means for supporting classroom enactments of the KBC model entails conceptualizing Knowledge Forum as a collective space for playing multi-player epistemic games. Participation in knowledge-building communities is then scaffolded through learning the moves of such games. We have designed scaffolding tools that highlight particular knowledge-building moves for practice and reflection as a means of supporting students and teachers in coming to understand how to collectively work together toward the progressive improvement of ideas. In order to examine our design theories in practice, we present research on Ideas First, a design-based research program involving enactments of the KBC model in Singaporean primary science classrooms (Bielaczyc & Ow, 2007, 2010; Ow & Bielaczyc, 2007; 2008).  相似文献   

4.
In this paper, inspired by some types of $BL$ -algebra filters (deductive systems) introduced in Haveshki et al. (Soft Comput 10:657–664, 2006), Kondo and Dudek (Soft Comput 12:419–423, 2008) and Turunen (Arch Math Log 40:467–473, 2001), we defined residuated lattice versions of them and study them in connection with Van Gasse et al. (Inf Sci 180(16):3006–3020, 2010), Lianzhen and Kaitai (Inf Sci 177:5725–5738, 2007), Zhu and Xu (Inf Sci 180:3614–3632, 2010). Also we consider some relations between these filters and quotient residuated lattice that are constructed via these filters.  相似文献   

5.
Matthias Möller 《Computing》2013,95(5):425-448
This paper is concerned with the extension of the algebraic flux-correction (AFC) approach (Kuzmin in Computational fluid and solid mechanics, Elsevier, Amsterdam, pp 887–888, 2001; J Comput Phys 219:513–531, 2006; Comput Appl Math 218:79–87, 2008; J Comput Phys 228:2517–2534, 2009; Flux-corrected transport: principles, algorithms, and applications, 2nd edn. Springer, Berlin, pp 145–192, 2012; J Comput Appl Math 236:2317–2337, 2012; Kuzmin et al. in Comput Methods Appl Mech Eng 193:4915–4946, 2004; Int J Numer Methods Fluids 42:265–295, 2003; Kuzmin and Möller in Flux-corrected transport: principles, algorithms, and applications. Springer, Berlin, 2005; Kuzmin and Turek in J Comput Phys 175:525–558, 2002; J Comput Phys 198:131–158, 2004) to nonconforming finite element methods for the linear transport equation. Accurate nonoscillatory approximations to convection-dominated flows are obtained by stabilizing the continuous Galerkin method by solution-dependent artificial diffusion. Its magnitude is controlled by a flux limiter. This concept dates back to flux-corrected transport schemes. The unique feature of AFC is that all information is extracted from the system matrices which are manipulated to satisfy certain mathematical constraints. AFC schemes have been devised with conforming $P_1$ and $Q_1$ finite elements in mind but this is not a prerequisite. Here, we consider their extension to the nonconforming Crouzeix–Raviart element (Crouzeix and Raviart in RAIRO R3 7:33–76, 1973) on triangular meshes and its quadrilateral counterpart, the class of rotated bilinear Rannacher–Turek elements (Rannacher and Turek in Numer Methods PDEs 8:97–111, 1992). The underlying design principles of AFC schemes are shown to hold for (some variant of) both elements. However, numerical tests for a purely convective flow and a convection–diffusion problem demonstrate that flux-corrected solutions are overdiffusive for the Crouzeix–Raviart element. Good resolution of smooth and discontinuous profiles is attested to $Q_1^\mathrm{nc}$ approximations on quadrilateral meshes. A synthetic benchmark is used to quantify the artificial diffusion present in conforming and nonconforming high-resolution schemes of AFC-type. Finally, the implementation of efficient sparse matrix–vector multiplications is addressed.  相似文献   

6.
Wireless sensor networks (WSNs), one of the commercial wireless mesh networks (WMNs), are envisioned to provide an effective solution for sensor-based AmI (Ambient Intelligence) systems and applications. To enable the communications between AmI sensor networks and the most popular TCP/IP networks seamlessly, the best solution model is to run TCP/IP directly on WSNs (Mulligan et al. 2009; Hui and Culler 2008; Han and Mam 2007; Kim et al. 2007; Xiaohua et al. 2004; Dunkels et al. 2004; Dunkels et al. 2004; Dunkels 2001; Dunkels et al. 2004). In this case, an IP assignment method is required to assign each sensor node a unique IP address. SIPA (Dunkels et al. 2004) is the best known IP assignment method that uses spatial relations and locations of sensor nodes to assign their IP addresses. It has been applied in Contiki (Dunkels et al. 2004), a famous WSN operating system, to support the 6LowPAN protocol. In Chang et al. (2009), we proposed the SLIPA (Scan-Line IP Assignment) algorithm to improve the assignment success rate (ASR) obtained by SIPA. SLIPA can achieve a good ASR when sensor nodes are uniformly distributed. However, if sensor nodes are deployed by other distributions, the improvements would be limited. This paper proposes a new spatial IP assignment method, called SLIPA-Q (SLIPA with equal-quantity partition), to improve SLIPA. Experiments show that, by testing the proposed method 1,000 times with 1,000 randomly deployed sensor nodes, the average ASR obtained by SLIPA-Q is over two times of that obtained by SLIPA. Under the same 88% ASR, the average numbers of sensor nodes those can be successfully assigned by SLIPA-Q, SLIPA, and SIPA are 950, 850, and 135, respectively. Comparing to previous spatial IP assignment methods, SLIPA-Q can achieve dramatic improvements in ASR for assigning IP addresses to a large set of sensor nodes.  相似文献   

7.
In this document, we present an alternative to the method introduced by Ebner (Pattern Recognit 60–67, 2003; J Parallel Distrib Comput 64(1):79–88, 2004; Color constancy using local color shifts, pp 276–287, 2004; Color Constancy, 2007; Mach Vis Appl 20(5):283–301, 2009) for computing the local space average color. We show that when the problem is framed as a linear system and the resulting series is solved, there is a solution based on LU decomposition that reduces the computing time by at least an order of magnitude.  相似文献   

8.
In this paper we present Caesar, an intelligent domestic service robot. In domestic settings for service robots complex tasks have to be accomplished. Those tasks benefit from deliberation, from robust action execution and from flexible methods for human?Crobot interaction that account for qualitative notions used in natural language as well as human fallibility. Our robot Caesar deploys AI techniques on several levels of its system architecture. On the low-level side, system modules for localization or navigation make, for instance, use of path-planning methods, heuristic search, and Bayesian filters. For face recognition and human?Cmachine interaction, random trees and well-known methods from natural language processing are deployed. For deliberation, we use the robot programming and plan language Readylog, which was developed for the high-level control of agents and robots; it allows combining programming the behaviour using planning to find a course of action. Readylog is a variant of the robot programming language Golog. We extended Readylog to be able to cope with qualitative notions of space frequently used by humans, such as ??near?? and ??far??. This facilitates human?Crobot interaction by bridging the gap between human natural language and the numerical values needed by the robot. Further, we use Readylog to increase the flexible interpretation of human commands with decision-theoretic planning. We give an overview of the different methods deployed in Caesar and show the applicability of a system equipped with these AI techniques in domestic service robotics.  相似文献   

9.
The TreeRank algorithm was recently proposed in [1] and [2] as a scoring-based method based on recursive partitioning of the input space. This tree induction algorithm builds orderings by recursively optimizing the Receiver Operating Characteristic curve through a one-step optimization procedure called LeafRank. One of the aim of this paper is the in-depth analysis of the empirical performance of the variants of TreeRank/LeafRank method. Numerical experiments based on both artificial and real data sets are provided. Further experiments using resampling and randomization, in the spirit of bagging and random forests are developed [3, 4] and we show how they increase both stability and accuracy in bipartite ranking. Moreover, an empirical comparison with other efficient scoring algorithms such as RankBoost and RankSVM is presented on UCI benchmark data sets.  相似文献   

10.
The stochastic collocation method (Babu?ka et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions $O(1)$ to moderate dimensions $O(10)$ and to high dimensions $O(100)$ . The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.  相似文献   

11.
The last decade has seen an explosion in the number of people learning English as a second language (ESL). In China alone, it is estimated to be over 300 million (Yang in Engl Today 22, 2006). Even in predominantly English-speaking countries, the proportion of non-native speakers can be very substantial. For example, the US National Center for Educational Statistics reported that nearly 10 % of the students in the US public school population speak a language other than English and have limited English proficiency (National Center for Educational Statistics (NCES) in Public school student counts, staff, and graduate counts by state: school year 2000–2001, 2002). As a result, the last few years have seen a rapid increase in the development of NLP tools to detect and correct grammatical errors so that appropriate feedback can be given to ESL writers, a large and growing segment of the world’s population. As a byproduct of this surge in interest, there have been many NLP research papers on the topic, a Synthesis Series book (Leacock et al. in Automated grammatical error detection for language learners. Synthesis lectures on human language technologies. Morgan Claypool, Waterloo 2010), a recurring workshop (Tetreault et al. in Proceedings of the NAACL workshop on innovative use of NLP for building educational applications (BEA), 2012), and a shared task competition (Dale et al. in Proceedings of the seventh workshop on building educational applications using NLP (BEA), pp 54–62, 2012; Dale and Kilgarriff in Proceedings of the European workshop on natural language generation (ENLG), pp 242–249, 2011). Despite this growing body of work, several issues affecting the annotation for and evaluation of ESL error detection systems have received little attention. In this paper, we describe these issues in detail and present our research on alleviating their effects.  相似文献   

12.
The class ${\mathcal{SLUR}}$ (Single Lookahead Unit Resolution) was introduced in Schlipf et al. (Inf Process Lett 54:133–137, 1995) as an umbrella class for efficient (poly-time) SAT solving, with linear-time SAT decision, while the recognition problem was not considered. ?epek et al. (2012) and Balyo et al. (2012) extended this class in various ways to hierarchies covering all of CNF (all clause-sets). We introduce a hierarchy ${\mathcal{SLUR}}_k$ which we argue is the natural “limit” of such approaches. The second source for our investigations is the class ${\mathcal{UC}}$ of unit-refutation complete clause-sets, introduced in del Val (1994) as a target class for knowledge compilation. Via the theory of “hardness” of clause-sets as developed in Kullmann (1999), Kullmann (Ann Math Artif Intell 40(3–4):303–352, 2004) and Ansótegui et al. (2008) we obtain a natural generalisation ${\mathcal{UC}}_k$ , containing those clause-sets which are “unit-refutation complete of level k”, which is the same as having hardness at most k. Utilising the strong connections to (tree-)resolution complexity and (nested) input resolution, we develop basic methods for the determination of hardness (the level k in ${\mathcal{UC}}_k$ ). A fundamental insight now is that ${\mathcal{SLUR}}_k = {\mathcal{UC}}_k$ holds for all k. We can thus exploit both streams of intuitions and methods for the investigations of these hierarchies. As an application we can easily show that the hierarchies from ?epek et al. (2012) and Balyo et al. (2012) are strongly subsumed by ${\mathcal{SLUR}}_k$ . Finally we consider the problem of “irredundant” clause-sets in ${\mathcal{UC}}_k$ . For 2-CNF we show that strong minimisations are possible in polynomial time, while already for (very special) Horn clause-sets minimisation is NP-complete. We conclude with an extensive discussion of open problems and future directions. We envisage the concepts investigated here to be the starting point for a theory of good SAT translations, which brings together the good SAT-solving aspects from ${\mathcal{SLUR}}$ together with the knowledge-representation aspects from ${\mathcal{UC}}$ , and expands this combination via notions of “hardness”.  相似文献   

13.
This paper investigates the problem of the pth moment exponential stability for a class of stochastic recurrent neural networks with Markovian jump parameters. With the help of Lyapunov function, stochastic analysis technique, generalized Halanay inequality and Hardy inequality, some novel sufficient conditions on the pth moment exponential stability of the considered system are derived. The results obtained in this paper are completely new and complement and improve some of the previously known results (Liao and Mao, Stoch Anal Appl, 14:165–185, 1996; Wan and Sun, Phys Lett A, 343:306–318, 2005; Hu et al., Chao Solitions Fractals, 27:1006–1010, 2006; Sun and Cao, Nonlinear Anal Real, 8:1171–1185, 2007; Huang et al., Inf Sci, 178:2194–2203, 2008; Wang et al., Phys Lett A, 356:346–352, 2006; Peng and Liu, Neural Comput Appl, 20:543–547, 2011). Moreover, a numerical example is also provided to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

14.
We present several variants of the sunflower conjecture of Erd?s & Rado (J Lond Math Soc 35:85–90, 1960) and discuss the relations among them. We then show that two of these conjectures (if true) imply negative answers to the questions of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990) and Cohn et al. (2005) regarding possible approaches for obtaining fast matrix-multiplication algorithms. Specifically, we show that the Erd?s–Rado sunflower conjecture (if true) implies a negative answer to the “no three disjoint equivoluminous subsets” question of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990); we also formulate a “multicolored” sunflower conjecture in ${\mathbb{Z}_3^n}$ and show that (if true) it implies a negative answer to the “strong USP” conjecture of Cohn et al. (2005) (although it does not seem to impact a second conjecture in Cohn et al. (2005) or the viability of the general group-theoretic approach). A surprising consequence of our results is that the Coppersmith–Winograd conjecture actually implies the Cohn et al. conjecture. The multicolored sunflower conjecture in ${\mathbb{Z}_3^n}$ is a strengthening of the well-known (ordinary) sunflower conjecture in ${\mathbb{Z}_3^n}$ , and we show via our connection that a construction from Cohn et al. (2005) yields a lower bound of (2.51 . . .) n on the size of the largest multicolored 3-sunflower-free set, which beats the current best-known lower bound of (2.21 . . . ) n Edel (2004) on the size of the largest 3-sunflower-free set in ${\mathbb{Z}_3^n}$ .  相似文献   

15.
The problem of mean square exponential stability for a class of impulsive stochastic fuzzy cellular neural networks with distributed delays and reaction–diffusion terms is investigated in this paper. By using the properties of M-cone, eigenspace of the spectral radius of nonnegative matrices, Lyapunov functional, Itô’s formula and inequality techniques, several new sufficient conditions guaranteeing the mean square exponential stability of its equilibrium solution are obtained. The derived results are less conservative than the results recently presented in Wang and Xu (Chaos Solitons Fractals 42:2713–2721, 2009), Zhang and Li (Stability analysis of impulsive stochastic fuzzy cellular neural networks with time varying delays and reaction–diffusion terms. World Academy of Science, Engineering and Technology 2010), Huang (Chaos Solitons Fractals 31:658–664, 2007), and Wang (Chaos Solitons Fractals 38:878–885, 2008). In fact, the systems discussed in Wang and Xu (Chaos Solitons Fractals 42:2713–2721, 2009), Zhang and Li (Stability analysis of impulsive stochastic fuzzy cellular neural networks with time varying delays and reaction–diffusion terms. World Academy of Science, Engineering and Technology 2010), Huang (Chaos Solitons Fractals 31:658–664, 2007), and Wang (Chaos Solitons Fractals 38:878–885, 2008) are special cases of ours. Two examples are presented to illustrate the effectiveness and efficiency of the results.  相似文献   

16.
17.
What is the meaning of language expressions and how to compute or calculate it? In this paper, we give an answer to this question by analysing the meanings of aspects and tenses in natural languages inside the formal model of an grammar of applicative, cognitive and enunciative operations (GRACE) (Desclés and Ro in Math Sci Hum 194:39–70, 2011), using the applicative formalism, functional types of categorial grammars and combinatory logic (CL) (Curry and Feys in Combinatory Logic. North-Holland Publishing, Amsterdam, 1958). In the enunciative theory (Benveniste in Problèmes de linguistique générale, 1, 2. Gallimard, Paris, 1974; Culioli in Formalisation et opérations de repérage, tome 2. Ophrys, Paris, 1999; Desclés in Une articulation entre syntaxe et sémantique cognitive: la grammaire applicative et cognitive, mémoires de la société de linguistique de Paris, nouvelle série, tome XX, l’architecture des théories, les modules et leurs interfaces. Peeters, Louvain, 2011) and following (Bally in Linguistique générale et linguistique française. Berne, Franke, 1965), an utterance can be decomposed into two components: a modus and a dictum (or a proposition). In GRACE, the modus is a complex operator applied to a proposition (a dictum) and is generated from more elementary operators of the categories of tense, aspect, and modality. The dictum is a proposition generated by a predicative relation. In this way, we can attribute a semantic meaning to different grammatical aspecto-temporal operators. The applicative expressions of CL can be easily translated into a functional programming language such as HASKELL or CAML (Ro in Les référentiels et opérateurs aspecto-temporels: définitions, formalisation logique et informatique. PhD thesis, Université de Paris-Sorbonne, Paris, 2012).  相似文献   

18.
Blair et al. (2001) developed an extension of logic programming called set based logic programming. In the theory of set based logic programming the atoms represent subsets of a fixed universe X and one is allowed to compose the one-step consequence operator with a monotonic idempotent operator O so as to ensure that the analogue of stable models in the theory are always closed under O. Marek et al. (1992, Ann Pure Appl Logic 96:231–276 1999) developed a generalization of Reiter’s normal default theories that can be applied to both default theories and logic programs which is based on an underlying consistency property. In this paper, we show how to extend the normal logic programming paradigm of Marek, Nerode, and Remmel to set based logic programming. We also show how one can obtain a new semantics for set based logic programming based on a consistency property.  相似文献   

19.
The inversion of schema mappings has been identified as one of the fundamental operators for the development of a general framework for metadata management. During the last few years, three alternative notions of inversion for schema mappings have been proposed (Fagin-inverse (Fagin, TODS 32(4), 25:1–25:53, 2007), quasi-inverse (Fagin et?al., TODS 33(2), 11:1–11:52, 2008), and maximum recovery (Arenas et?al., TODS 34(4), 22:1–22:48, 2009)). However, these notions lack some fundamental properties that limit their practical applicability: most of them are expressed in languages including features that are difficult to use in practice, some of these inverses are not guaranteed to exist for mappings specified with source-to-target tuple-generating dependencies (st-tgds), and it has been futile to search for a meaningful mapping language that is closed under any of these notions of inverse. In this paper, we develop a framework for the inversion of schema mappings that fulfills all of the above requirements. It is based on the notion of ${\mathcal{C}}$ -maximum recovery, for a query language ${\mathcal{C}}$ , a notion designed to generate inverse mappings that recover back only the information that can be retrieved with queries in ${\mathcal{C}}$ . By focusing on the language of conjunctive queries (CQ), we are able to find a mapping language that contains the class of st-tgds, is closed under CQ-maximum recovery, and for which the chase procedure can be used to exchange data efficiently. Furthermore, we show that our choices of inverse notion and mapping language are optimal, in the sense that choosing a more expressive inverse operator or mapping language causes the loss of these properties.  相似文献   

20.
The superposition calculus (Bachmair and Ganzinger, J. Log Comput. 3(4), 217–247, 1994; Nieuwenhuis and Rubio 1994) is the state-of-the-art inference system used in saturation-based theorem proving for first-order logic with equality.We present an extension of this calculus that permits us to reason on formulae built on primal grammars (Hermann and Galbavý, Theor. Comput. Sci. 176(1–2), 111–158, 1997) a schematization language that has been devised to denote infinite sequences of structurally similar terms, defined by primitive recursion. We prove that the calculus is sound and refutationally complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号