首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron diffusion and the vapor-phase deposition of silicon layers are used to prepare ultrashallow p+-n junctions and p+-Si-n-CdF2 heterostructures on an n-CdF2 crystal surface. Forward portions of the IV characteristics of the p+-n junctions and p+-Si-n-CdF2 heterojunctions reveal the CdF2 band gap (7.8 eV), as well as allow the identification of the valence-band structure of cadmium fluoride crystals. Under conditions in which forward bias is applied to the p+-Si-n-CdF2 heterojunctions, electroluminescence spectra are measured for the first time in the visible spectral region.  相似文献   

2.
Results obtained in a study of spectrometric characteristics of arrays of four detectors based on 4H-SiC ion-implantation-doped p +-n junctions in the temperature range 25–140 °C are reported for the first time. The junctions were fabricated by ion implantation of aluminum into epitaxial 4H-SiC layers of thickness ≤45 μm, grown by chemical vapor deposition with uncompensated donor concentration N d ? N a = (4–6) × 1014 cm?3. The structural features of the ion-implantation-doped p +-layers were studied by secondary-ion mass spectrometry, transmission electron microscopy, and Rutherford backscattering spectroscopy in the channeling mode. Parameters of the diode arrays were determined by testing in air with natural-decay alpha particles with an energy of 3.76 MeV. The previously obtained data for similar single detectors were experimentally confirmed: the basic characteristics of the detector arrays, the charge collection efficiency and energy resolution, are improved as the working temperature increases.  相似文献   

3.
Electrical properties of a p+-Bi2Te3-p-GaSe isotype heterostructure fabricated for the first time are reported. A qualitative model is suggested which explains the emergence of negative differential conductivity for a forward-biased structure and for a reverse-biased structure, which is also illuminated.  相似文献   

4.
Epitaxial GaN layers were grown by hydride vapor phase epitaxy (HVPE) on commercial (CREE Inc., USA) p+-6H-SiC substrates (Na ? Nd ≈ 7.8 × 1017 cms?3) and n+-6H-SiC Lely substrates with a predeposited p+-6H-SiC layer. A study of the electrical properties of the n-GaN/p-SiC heterostructures obtained confirmed their fairly good quality and demonstrated that the given combination of growth techniques is promising for fabrication of bipolar and FET transistors based on the n-GaN/p-SiC heterojunctions.  相似文献   

5.
Sh. O. Eminov 《Semiconductors》2016,50(8):1005-1009
The optical absorption coefficient α in p+-InSb layers (with hole concentrations of p ≈ 1 × 1017–1.2 × 1019 cm–3), grown by liquid-phase epitaxy on p-InSb substrates, is measured in the spectral range of 5-12 µm at 90 K, and the impurity photoconductivity is measured (at 60 and 90 K) in p+p structures. It is found that a in the p+ layers reaches a value of 7000 cm–1 (at p ≈ 2 × 1019 cm–1). It is shown that the measured substrate value of (α ≈1–3 cm–1) is overestimated in comparison with estimates (α ≈ 0.1 cm–1) based on comparing the photoconductivity data. This discrepancy is explained by the fact that the optical transitions of holes responsible for photoconductivity are obscured by the excitation of electrons to the conduction band. The photoionization cross section for these transitions does not exceed 1 × 10–15 cm2.  相似文献   

6.
The possibility of controlling the effective lifetime of nonequilibrium carriers by varying the lattice mismatch between the interfaced materials of a heterostructure has been studied on the example of InGaAs/GaAs heterostructures. It was found that, at a given composition (thickness) of a lightly doped layer of the InGaAs alloy, the nonequilibrium carrier lifetime depends on its thickness (composition), which enables variation of the nonequilibrium carrier lifetime from several nanoseconds to a microsecond without any significant change in the concentration of mobile carriers. The results obtained were used to fabricate pulse p +-p 0-π-n 0-n + diodes with blocking voltages of up to 500 V, which can switch currents of ≥10 A and have recovery times no longer than 10 ns.  相似文献   

7.
Mesa epitaxial 4H-SiC-based p +-p-n 0-n + diodes have been fabricated and their reverse recovery characteristics have been measured in modes typical of fast semiconductor current breakers, drift step recovery diodes, and SOS diodes. It has been found that, after the short (~10 ns) pulsed injection of nonequilibrium carriers by a forward current with a density of 200–400 A cm?2 and the subsequent application of a reverse voltage pulse (with a rise time of 2 ns), diodes can break a reverse current with a density of 5–40 kA cm?2 in a time of about (or less than) 0.3 ns. A possible mechanism for ultrafast current breaking is discussed.  相似文献   

8.
A study of the electron component of impact ionization in the p +-n ?-n + junction in the 6HSiC polytype made it possible to detect a giant burst of impact ionization and origination of an extra early avalanche breakdown. The electric field of this breakdown is lower by ~20% than the electric field of the breakdown arising as a result of a steady development of the impact ionization. It is of interest that this phenomenon occurs abruptly, without any apparent causes, in particular, without an increase in the dark current characteristic of a prebreakdown state of the p-n junction. Conditions for origination of an unusual breakdown and its properties made it possible to assume that there are nonlinear processes that give rise to a streamer. In the p-n junction plane, the anomalous breakdown is seen as a narrow glowing track with a width of ≈10 μm. This effect takes place in the conditions of the Wannier-Stark ladder of states. The latter can stimulate a local accumulation of charge and formation of a streamer structure.  相似文献   

9.
A new type of light-emitting diodes (LEDs), a high-efficiency device based on an n-GaSb/p-GaSb/n-GaInAsSb/P-AlGaAsSb thyristor heterostructure, with the maximum emission intensity at wavelength λ = 1.95 μm, has been suggested and its electrical and luminescent characteristics have been studied. It is shown that the effective radiative recombination in the thyristor structure in the n-type GaInAsSb active region is provided by double-sided injection of holes from the neighboring p-type regions. The maximum internal quantum efficiency of 77% was achieved in the structure under study in the pulsed mode. The average optical power was as high as 2.5 mW, and the peak power in the pulsed mode was 71 mW, which exceeded by a factor of 2.9 the power obtained with a standard n-GaSb/n-GaInAsSb/P-AlGaAsSb LED operating in the same spectral range. The approach suggested will make it possible to improve LED parameters in the entire mid-IR spectral range (2–5 μm).  相似文献   

10.
The effect of production conditions and subsequent stimulation by ultrasonic irradiation on the formation of a solid solution at the n-CdS/p-CdTe interface in solar cells has been investigated. The phase composition of the solid-solution transient layer was investigated by a nondestructive photoelectric method (measurement of the spectral distribution of photosensitivity in the gate and photodiode modes). It is shown that the phase composition and thickness of the intermediate CdTe1?x S x layer depend strongly on the heterostructure formation conditions.  相似文献   

11.
The n-ZnO/p-CuO heterostructure is prepared, and its I-V characteristic is measured. It is shown that the heterostructure conductivity is primarily determined by the CuO layer and the n-ZnO/p-CuO heterojunction itself.  相似文献   

12.
Results of X-ray diffraction and spectral-optical studies of n-ZnO and p-CuO films deposited by gas-discharge sputtering with subsequent annealing are presented. It is shown that, despite the difference in the crystal systems, the polycrystallinity of n-ZnO and p-CuO films enables fabrication of a heterojunction from this pair of materials.  相似文献   

13.
The influence of dopant concentration on both in-plane mobility and minority carrier lifetime in long-wave infrared InAs/InAsSb superlattices (SLs) was investigated. Unintentially doped (n-type) and various concentrations of Be-doped (p-type) SLs were characterized using variable-field Hall and photoconductive decay techniques. Minority carrier lifetimes in p-type InAs/InAsSb SLs are observed to decrease with increasing carrier concentration, with the longest lifetime at 77 K determined to be 437 ns, corresponding to a measured carrier concentration of p 0 = 4.1 × 1015 cm?3. Variable-field Hall technique enabled the extraction of in-plane hole, electron, and surface electron transport properties as a function of temperature. In-plane hole mobility is not observed to change with doping level and increases with reducing temperature, reaching a maximum at the lowest temperature measured of 30 K. An activation energy of the Be-dopant is determined to be 3.5 meV from Arrhenius analysis of hole concentration. Minority carrier electrons populations are suppressed at the highest Be-doping levels, but mobility and concentration values are resolved in lower-doped samples. An average surface electron conductivity of 3.54 × 10?4 S at 30 K is determined from the analysis of p-type samples. Effects of passivation treatments on surface conductivity will be presented.  相似文献   

14.
Silicon nanowires are formed on n-Si substrates by chemical etching. p-NiO/n-Si heterostructures are fabricated by reactive magnetron sputtering. The energy diagram of anisotype p-NiO/n-Si heterostructures is constructed according to the Anderson model. The current–voltage and capacitance–voltage characteristics are measured and analyzed. The main current-transport mechanisms through the p-NiO/n-Si heterojunction under forward and reverse biases are established.  相似文献   

15.
The effect of irradiation with 1-MeV neutrons on electrical properties of Al-based Schottky barriers and p+-n-n+ diodes doped by ion-implantation with Al was studied; the devices were formed on the basis of high-resistivity, pure 4H-SiC epitaxial layers possessing n-type conductivity and grown by vapor-transport epitaxy. The use of such structures made it possible to study the radiation defects in the epitaxial layer at temperatures as high as 700 K. Rectifying properties of the diode structures were no longer observed after irradiation of the samples with neutrons with a dose of 6×1014 cm?2; this effect is caused by high (up to 50 GΩ) resistance of the layer damaged by neutron radiation. However, the diode characteristics of irradiated p+-n-n+ structures were partially recovered after an annealing at 650 K.  相似文献   

16.
The physical and technological basics of the method used to lift off lightly and moderately doped n-GaN films from heavily doped n+-GaN substrates are considered. The detachment method is based on the free-charge-carrier absorption of IR laser light, which is substantially higher in n+-GaN films.  相似文献   

17.
Thermal-activation and photoactivation methods were used to ascertain the existence of two-hole traps in p-ZnTe crystals and two-electron traps in n-ZnS. It was found that these traps have a large number of energy states that are grouped in two series of levels: EV+(0.46–0.66) eV and EV+(0.06–0.26) eV in p-ZnTe and EC?(0.6–0.65) eV and EC?(0.14–0.18) eV in n-ZnS. Both the hole and the electron traps belong to the class of slow traps with bikinetic properties. These traps feature normal kinetic properties in the state with a single trapped charge carrier and feature anomalous kinetic properties in the state with two charge carriers. Multiple-parameter models allowing for a relation of traps in p-ZnTe and n-ZnS to the vacancy-impurity pairs distributed according to their interatomic distances and localized in the region of microinhomogeneities with collective electric fields that repel the majority charge carriers are suggested. The main special features of behavior of electron and hole traps are explained consistently using the above models.  相似文献   

18.
Using the method of differential coefficients of current-voltage characteristics, deep levels in the Cz-Si p-n structures are studied under the ultrasonic loading conditions (longitudinal waves of a frequency of 4–26 MHz and intensity as high as 0.6 W/cm2). The levels with thermal activation energy of 0.44, 0.40, 0.37, 0.48, and 0.46 eV are revealed. It is assumed that these levels are associated with the E center, bistable BSO2i complex, and interstitial atoms captured by dislocation loops, respectively. It is established that ultrasound induces an increase in the contribution to the recombination processes of shallower levels and a decrease in activation energy of defects. The possibility of acoustoinduced reversible reconstruction of the configuration of the BSO2i complex is analyzed.  相似文献   

19.
Photoluminescence and deep-level transient spectroscopy are used to study the effect of irradiation with fast neutrons and high-energy Kr (235 MeV) and Bi (710 MeV) ions on the optical and electrical properties of high-resistivity high-purity n-type 4H-SiC epitaxial layers grown by chemical vapor deposition. Electrical characteristics were studied using the barrier structures based on these epitaxial layers: Schottky barriers with Al and Cr contacts and p+-n-n+ diodes fabricated by Al ion implantation. According to the experimental data obtained, neutrons and high-energy ions give rise to the same defect-related centers. The results show that, even for the extremely high ionization density (34 keV/nm) characteristic of Bi ions, the formation of the defect structure in SiC single crystals is governed by energy losses of particles due to elastic collisions.  相似文献   

20.
The depolarization in a metal-p-ferroelectric-n-semiconductor structure is calculated based on an analysis of the experimental parameters of a ferroelectric hysteresis loop in a metal-ferroelectric-metal structure. For a semiconductor, the Poisson equation is solved using a standard method, while, for a ferroelectric, a numerical integration is applied. Two variants of semiconductor parameters are considered: (i) a thick n-type region (there is a region of electrical neutrality beyond a space-charge region), and (ii) a thin n-type region (an electric field penetrates all the way through this region). It is shown that depolarization significantly reduces ferroelectric polarization, and this reduction is stronger in the case of a semiconductor with lower doping. If the electric field penetrates all the way through the n-type region, depolarization decreases as the n-type region becomes thinner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号