共查询到20条相似文献,搜索用时 15 毫秒
1.
RT Premont A Claing N Vitale JL Freeman JA Pitcher WA Patton J Moss M Vaughan RJ Lefkowitz 《Canadian Metallurgical Quarterly》1998,95(24):14082-14087
G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane. 相似文献
2.
A Godi I Santone P Pertile P Devarajan PR Stabach JS Morrow G Di Tullio R Polishchuk TC Petrucci A Luini MA De Matteis 《Canadian Metallurgical Quarterly》1998,95(15):8607-8612
Homologues of two major components of the well-characterized erythrocyte plasma-membrane-skeleton, spectrin (a not-yet-cloned isoform, betaI Sigma* spectrin) and ankyrin (AnkG119 and an approximately 195-kDa ankyrin), associate with the Golgi complex. ADP ribosylation factor (ARF) is a small G protein that controls the architecture and dynamics of the Golgi by mechanisms that remain incompletely understood. We find that activated ARF stimulates the in vitro association of betaI Sigma* spectrin with a Golgi fraction, that the Golgi-associated betaI Sigma* spectrin contains epitopes characteristic of the betaI Sigma2 spectrin pleckstrin homology (PH) domain known to bind phosphatidylinositol 4,5-bisphosphate (PtdInsP2), and that ARF recruits betaI Sigma* spectrin by inducing increased PtdInsP2 levels in the Golgi. The stimulation of spectrin binding by ARF is independent of its ability to stimulate phospholipase D or to recruit coat proteins (COP)-I and can be blocked by agents that sequester PtdInsP2. We postulate that a PH domain within betaI Sigma* Golgi spectrin binds PtdInsP2 and acts as a regulated docking site for spectrin on the Golgi. Agents that block the binding of spectrin to the Golgi, either by blocking the PH domain interaction or a constitutive Golgi binding site within spectrin's membrane association domain I, inhibit the transport of vesicular stomatitis virus G protein from endoplasmic reticulum to the medial compartment of the Golgi complex. Collectively, these results suggest that the Golgi-spectrin skeleton plays a central role in regulating the structure and function of this organelle. 相似文献
3.
Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate 总被引:1,自引:0,他引:1
JK Klarlund LE Rameh LC Cantley JM Buxton JJ Holik C Sakelis V Patki S Corvera MP Czech 《Canadian Metallurgical Quarterly》1998,273(4):1859-1862
Cellular levels of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are rapidly elevated in response to activation of growth factor receptor tyrosine kinases. This polyphosphoinositide binds the pleckstrin homology (PH) domain of GRP1, a protein that also contains 200 residues with high sequence similarity to a segment of the yeast Sec7 protein that functions as an ADP ribosylation exchange factor (ARF) (Klarlund, J., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997) Science 275, 1927-1930). Here we show that dioctanoyl PtdIns(3,4,5)P3 binds the PH domain of GRP1 with a Kd = 0.5 microM, an affinity 2 orders of magnitude greater than dioctanoyl-PtdIns(4,5)P2. Further, the Sec7 domain of GRP1 is found to catalyze guanine nucleotide exchange of ARF1 and -5 but not ARF6. Importantly, PtdIns(3,4,5)P3, but not PtdIns(4,5)P2, markedly enhances the ARF exchange activity of GRP1 in a reaction mixture containing dimyristoylphosphatidylcholine micelles, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and a low concentration of sodium cholate. PtdIns(3,4,5)P3-mediated ARF nucleotide exchange through GRP1 is selectively blocked by 100 microM inositol 1,3,4,5-tetrakisphosphate, which also binds the PH domain of GRP1. Taken together, these data are consistent with the hypothesis that selective recruitment of GRP1 to PtdIns(3,4,5)P3 in membranes activates ARF1 and -5, known regulators of intracellular membrane trafficking. 相似文献
4.
ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane. 相似文献
5.
A systematic search was made in Homer's Iliad for somatic expressions of emotional distress and abstract psychological words for the emotions. A few somatic sensations were found, many somatic metaphors, and an extensive psychological vocabulary of emotions. Homer regarded the heart as the seat of the emotions, intellect and will. It is argued that the increasing sophistication of his 'heart' language reveals a deepening psychological understanding of the emotions in ancient Greece. 相似文献
6.
ATP-sensitive potassium (KATP) channels in the pancreatic beta cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The beta cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+. 相似文献
7.
M Franco J Boretto S Robineau S Monier B Goud P Chardin P Chavrier 《Canadian Metallurgical Quarterly》1998,95(17):9926-9931
Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component beta-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells. 相似文献
8.
H Yamaguchi M Hara M Strobeck K Fukasawa A Schwartz G Varadi 《Canadian Metallurgical Quarterly》1998,273(30):19348-19356
In order to study the precise mechanisms of alpha1 subunit modulation by an auxiliary beta subunit of voltage-dependent calcium channels, a recombinant beta3 subunit fusion protein was produced and introduced into oocytes that express the human alpha1C subunit. Injection of the beta3 subunit protein rapidly modulated the current kinetics and voltage dependence of activation, whereas massive augmentation of peak current amplitude occurred over a longer time scale. Consistent with the latter, a severalfold increase in the amount of the alpha1C subunit in the plasma membrane was detected by quantitative confocal laser-scanning microscopy after beta3 subunit injection. Pretreatment of oocytes with bafilomycin A1, a vacuolar type H+-ATPase inhibitor, abolished the increase of the alpha1C subunit in the plasma membrane, attenuated current increase, but did not affect the modulation of current kinetics and voltage dependence by the beta3 subunit. These results provide clear evidence that the beta subunit modifies the calcium channel complex in a binary fashion; one is an allosteric modulation of the alpha1 subunit function and the other is a chaperoning of the alpha1 subunit to the plasma membrane. 相似文献
9.
Specific interaction of Golgi coatomer protein alpha-COP with phosphatidylinositol 3,4,5-trisphosphate 总被引:1,自引:0,他引:1
A Chaudhary QM Gu O Thum AA Profit Y Qi L Jeyakumar S Fleischer GD Prestwich 《Canadian Metallurgical Quarterly》1998,273(14):8344-8350
The phosphoinositide binding selectivity of Golgi coatomer COPI polypeptides was examined using photoaffinity analogs of the soluble inositol polyphosphates Ins(1,4,5)P3, Ins(1,3,4,5)P4, and InsP6, and of the polyphosphoinositides PtdIns(3,4,5)P3, PtdIns(4,5)P2, and PtdIns(3,4)P2. Highly selective Ins(1,3,4,5)P4-displaceable photocovalent modification of the alpha-COP subunit was observed with a p-benzoyldihydrocinnamide (BZDC)-containing probe, [3H]BZDC-Ins(1,3,4,5)P4. A more highly phosphorylated probe, [3H]BZDC-InsP6 probe labeled six of the seven subunits, with only beta, beta', delta, and epsilon-COP showing competitive displacement by excess InsP6. Importantly, [3H]BZDC-triester-PtdIns(3,4,5)P3, the lipid with the same phosphorylation pattern as Ins(1,3,4,5)P4, showed specific, PtdIns(3,4,5)P3-displaceable labeling of only alpha-COP. Labeling by the PtdIns(4,5)P2 and PtdIns(3,4)P2 photoaffinity probes was less intense and showed no discrimination based on PtdInsPn ligand. Thus, both the D-3 and D-5 phosphates are critical for the alpha-COP-PtdIns(3,4,5)P3 interaction, suggesting an important role for this polyphosphoinositide in vesicular trafficking. 相似文献
10.
Brefeldin A (BFA) inhibited the exchange of ADP ribosylation factor (ARF)-bound GDP for GTP by a Golgi-associated guanine nucleotide-exchange protein (GEP) [Helms, J.B. & Rothman, J.E. (1992) Nature (London) 360, 352-354; Donaldson, J.G., Finazzi, D. & Klausner, R.D. (1992) Nature (London) 360, 350-352]. Cytosolic ARF GEP was also inhibited by BFA, but after purification from bovine brain and rat spleen, it was no longer BFA-sensitive [Tsai, S.-C., Adamik, R., Moss, J. & Vaughan, M. (1996) Proc. Natl. Acad. Sci. USA 93, 305-309]. We describe here purification from bovine brain cytosol of a BFA-inhibited GEP. After chromatography on DEAE-Sephacel, hydroxylapatite, and Mono Q and precipitation at pH 5.8, GEP was eluted from Superose 6 as a large molecular weight complex at the position of thyroglobulin (approximately 670 kDa). After SDS/PAGE of samples from column fractions, silver-stained protein bands of approximately 190 and 200 kDa correlated with activity. BFA-inhibited GEP activity of the 200-kDa protein was demonstrated following electroelution from the gel and renaturation by dialysis. Four tryptic peptides from the 200-kDa protein had amino acid sequences that were 47% identical to sequences in Sec7 from Saccharomyces cerevisiae (total of 51 amino acids), consistent with the view that the BFA-sensitive 200-kDa protein may be a mammalian counterpart of Sec7 that plays a similar role in cellular vesicular transport and Sec7 may be a GEP for one or more yeast ARFs. 相似文献
11.
J Elwardy-Mérézak JP Maltier J Cohen-Tannoudji JL Lécrivain V Vivat C Legrand 《Canadian Metallurgical Quarterly》1994,13(1):23-37
Previous studies from our laboratory have suggested that post-receptor events at the level of beta-adrenergic receptor-adenylate cyclase interaction could be altered in myometrium by steroid hormones or pregnancy. In this study, we have addressed this question by performing a direct evaluation of rat myometrial Gs proteins at various stages of pregnancy or 24 h after administration of progesterone. In the 50,000 g myometrial plasma membrane fraction, in the presence of 32P-labelled NAD, cholera toxin ribosylated three predominant proteins with apparent molecular masses of 42, 47 and 55 kDa. Western blot analysis using the RM/1 antibody recognized the 42 and 47 kDa cholera toxin ADP-ribosylated bands but not the 55 kDa band. Thus, the 42 and 47 kDa immunoreactive bands were interpreted as being the small (Gs alpha-S) and large (Gs alpha-L) forms of Gs respectively. With a more purified myometrial plasma membrane fraction (105,000 g) an additional minor band of 44 kDa could be observed with both techniques. Treatment of late pregnant rats with 5 mg progesterone resulted in a significant increase in both Gs alpha subunits: +25% and +30% after ADP-ribosylation, +50% and +60% after Western blot analysis for Gs alpha-L and Gs alpha-S respectively. Pretreatment with the antiprogestin RU 486 completely suppressed the effect of progesterone, suggesting that the expression of Gs alpha subunits may be under the control of progesterone. However, changes in the myometrial content of Gs in progesterone-treated rats were not associated with concomitant variations in the steady-state levels of mRNA as demonstrated by Northern blot analysis. These data suggest a post-translational regulation of Gs expression by progesterone. Amounts of ADP-ribosylated Gs showed characteristic changes during the course of pregnancy with a fourfold or threefold increase (P < 0.05) on day 15 versus day 12 or delivery respectively. During pregnancy, or after progesterone administration, myometrial alterations of Gs strongly correlated (r = 0.913, P < 0.01) with the cholera toxin-stimulated adenylate cyclase activity. These findings provide evidence that changes in myometrial amounts of functional Gs i) are controlled by the hormonal status of pregnancy and progesterone and ii) play an important role in the transduction pattern of adenylate cyclase activity during the course of pregnancy. 相似文献
12.
13.
The beta2 subunit of the Na,K-ATPase displays functional properties of both an integral constituent of an ion pump and an adhesion and neurite outgrowth-promoting molecule in vitro. To investigate whether the beta1 subunit of the Na,K-ATPase can functionally substitute for the beta2 isoform in vivo, we have generated beta2/beta1 knock-in mice by homologous recombination in embryonic stem cells. In beta2/beta1 knock-in mice, expression of beta2 was abolished, whereas beta1 mRNA expression from the mutated gene amounted to approximately 15% of the normal expression of beta2 in the adult mouse brain and prevented the juvenile lethality observed for beta2 null mutant mice. In contrast to beta2 null mutant mice, the overall morphological structure of all analyzed brain regions was normal. By immunohistochemical analysis, beta1 expression was detected in photoreceptor cells in the retina of knock-in mice at an age when expression of beta1 and beta2, respectively, is downregulated and persisting in the wild-type mice. Morphological analysis by light and electron microscopy revealed a progressive degeneration of photoreceptor cells. Apoptotic death of photoreceptor cells determined quantitatively by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analysis increased in beta2/beta1 knock-in mice with age. These observations suggest that the beta1 subunit of the Na,K-ATPase can substitute sufficiently, at least in certain cell types, for the role of the beta2 subunit as a component of a functional Na,K-ATPase, but they do not allow us to determine the possible role of the beta2 subunit as an adhesion molecule in vivo. 相似文献
14.
This work describes the molecular mechanism of fatty acid and hormonal modulation of retinoid X receptor (RXR alpha) in rat liver. We examined the effects of different fatty acids (myristic-, stearic-, linolenic-, oleic-, arachidonic- and tetradecylthioacetic acid (TTA)) and the synthetic glucocorticoid dexamethasone on RXR alpha mRNA and protein steady-state levels in hepatoma cells and cultured hepatocytes. Fatty acids induced the RXR alpha gene expression where TTA showed the most inductive effect (three-fold induction). Dexamethasone alone resulted in a stronger induction (up to seven-fold in hepatocytes), and in combination with fatty acids, an additive or synergistic effect was observed. The RXR alpha protein level in cultured hepatocytes showed a similar pattern of regulation, with a slight inductive effect of fatty acids and an additive or synergistic effect was observed in combination with dexamethasone. Our results indicate that the RXR alpha gene expression is under distinct regulation by fatty acids and dexamethasone acid which strongly suggests a coupling with the lipid metabolizing system and the retinoid signaling pathway. 相似文献
15.
1. Ketamine has a number of effects that suggest that it may interact with alpha- and beta-adrenoceptors. To date, the experimental evidence for this has been indirect and has been based on physiological studies using competitive blocking agents. In the present study we sought to determine from receptor binding studies whether ketamine binds directly to alpha- and beta-adrenoceptors. 2. Membrane preparations of alpha 1- and beta 2-adrenergic binding sites were obtained from urinary bladder and urethrae of sheep. These binding sites were characterized by saturation analyses using [3H]-prazosin for alpha 1-adrenoceptor binding sites and [125I]-cyanopindolol (CYP) for the beta 2-adrenoceptor binding sites. The receptors were further characterized by displacement studies using selective and non-selective antagonists. 3. Studies in which ketamine was used to displace [3H]-prazosin revealed a Kd of 3.40 +/- 1.23 x 10(-3) mol/L for ketamine binding to alpha 1-adrenoceptors. Displacement studies of [125I]-CYP by ketamine showed a Kd of 0.35 +/- 0.03 x 10(-3) mol/L for ketamine binding to beta 2-adrenoceptors. 4. We conclude that ketamine interacts directly with both alpha 1- and beta 2-adrenoceptors and that such interactions probably explain the reported effects of this agent on the vasculature and the bronchial tree. 相似文献
16.
KI Mitchelhill BJ Michell CM House D Stapleton J Dyck J Gamble C Ullrich LA Witters BE Kemp 《Canadian Metallurgical Quarterly》1997,272(39):24475-24479
The AMP-activated protein kinase (AMPK) consists of catalytic alpha and noncatalytic beta and gamma subunits and is responsible for acting as a metabolic sensor for AMP levels. There are multiple genes for each subunit and the rat liver AMPK alpha1 and alpha2 catalytic subunits are associated with beta1 and gamma1 noncatalytic subunits. We find that the isolated gamma1 subunit is N-terminally acetylated with no other posttranslational modification. The isolated beta1 subunit is N-terminally myristoylated. Transfection of COS cells with AMPK subunit cDNAs containing a nonmyristoylatable beta1 reduces, but does not eliminate, membrane binding of AMPK heterotrimer. The isolated beta1 subunit is partially phosphorylated at three sites, Ser24/25, Ser182, and Ser108. The Ser24/25 and Ser108 sites are substoichiometrically phosphorylated and can be autophosphorylated in vitro. The Ser-Pro site in the sequence LSSS182PPGP is stoichiometrically phosphorylated, and no additional phosphate is incorporated into this site with autophosphorylation. Based on labeling studies in transfected cells, we conclude that alpha1 Thr172 is a major, although not exclusive, site of both basal and stimulated alpha1 phosphorylation by an upstream AMPK kinase. 相似文献
17.
Heterologous expression of the beta subunit of H+/K(+)-ATPase (HK beta) with alpha subunits of Na+/K(+)-ATPase (NK alpha) in yeast leads to the formation of ouabain binding complexes, indicating assembly of the two subunits into active ion pumps (Eakle, K. A., Kim, K. S., Kabalin, M. A., and Farley, R. A. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 2834-2838). Complexes of NK alpha and HK beta are less sensitive to inhibition of ouabain binding by K+, suggesting that HK beta lowers the affinity of K+ binding sites. This effect is particularly pronounced when HK beta is combined with the alpha 3 isoform of NK alpha. In this case, titration with K+ yields a biphasic curve, suggesting that there are two nonequivalent sites for K+ binding. Attempts at purifying complexes formed with either alpha 1 + HK beta or alpha 3 + HK beta using SDS extraction of microsomal membranes resulted in the loss of ouabain binding. Controls show that alpha 1 + beta 1 and alpha 3 + beta 1 complexes still retain ouabain binding after SDS extraction under the same conditions. This suggests that the HK beta subunit forms a less stable complex with NK alpha subunits. We have created chimeric beta subunits comprised of the amino-terminal cytoplasmic and transmembrane regions of HK beta combined with the carboxyl-terminal extracellular region of Na+/K(+)-ATPase beta 1 (HN beta 1) and the complementary chimera with amino-terminal cytoplasmic and transmembrane regions of beta 1 combined with the carboxyl-terminal extracellular region of HK beta (NH beta 1). When NH beta 1 is combined with either alpha 1 or alpha 3, the complexes show profiles of K+ inhibition of ouabain binding that are very similar to HK beta combined with either alpha 1 or alpha 3. The data suggest that the extracellular region of HK beta is primarily responsible for the effect on apparent K+ affinity. When the HN beta 1 subunit is expressed with the alpha 3 subunit, less than 5% of the amount of ouabain binding complexes are formed compared with HN beta 1 + alpha 1. This observation suggests that the HN beta 1 subunit either assembles poorly or forms an unstable complex with alpha 3. After SDS extraction, complexes of alpha 1 + NH beta 1 and alpha 3 + NH beta 1 retain ouabain binding, while alpha 1 + HN beta 1 complexes are sensitive to SDS extraction.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
18.
Voltage-activated Shaker-related potassium channels (kv1) consist of alpha and beta subunits. We have analysed the structure of the human KCNA1B (hKv beta 1) gene. KCNA1B is > 250 kb in size and encodes at least three Kv beta 1 splice variants. The Kv beta 1 open reading frame is divided into 14 exons. In contrast, genes coding for family members of KCNA (Kv 1 alpha) subunits are markedly smaller and have intronless open reading frames. The expression of Kv 1 alpha and Kv beta mRNA was compared in Northern blots of poly(A+) RNA isolated from various human brain tissues. The results suggest an intricate and cell-specific regulation of Kv 1 alpha and Kv beta mRNA synthesis such that distinct combinations of alpha and beta subunits would occur in different nuclei of the brain. The splice variants hKv beta 1.1 and hKv beta 1.2 were functionally characterized in coexpression studies with hKv 1.5 alpha subunits in 293 cells. It is shown that the confer rapid inactivation on hKv 1.5 channels with different potencies. This may be due to differences in their amino terminal sequences and/or inactivating domains. It is also shown that the amino terminal Kv beta 1.1 and Kv 1.4 alpha inactivating domains compete with each other, probably for the binding to the same receptor site(s) on Kv 1 alpha-subunits. 相似文献
19.
It is generally considered that the eukaryotic polypeptide chain initiation factor 2 (eIF-2) from rabbit reticulocytes consists of three nonidentical subunits termed alpha, beta, and gamma, in order of increasing molecular weight. However, a recent report [Stringer, E. A., Chaudhuri, A., Valenzuela, D. & Maitra, U. (1980) Proc. Natl. Acad. Sci. USA 77, 3356-3359] suggested that this factor is made up of only two subunits. In this paper we show that limited proteolysis of rabbit reticulocyte eIF-2 leads to loss of the beta subunit. This modified eIF-2 has the same activity as the native factor in promoting ternary (eIF-2.GTP.Met-tRNAi) and 40S (eIF-2.GTP.Met-tRNAi.40S ribosome) initiation complex formation. Like native eIF-2, the protease-treated factor can restore translation in heme-deficient lysates. On the other hand, the treated factor is less stable than the native protein. 相似文献
20.
Y Kato-Yamada H Noji R Yasuda K Kinosita M Yoshida 《Canadian Metallurgical Quarterly》1998,273(31):19375-19377
Rotation of the epsilon subunit in F1-ATPase from thermophilic Bacillus strain PS3 (TF1) was observed under a fluorescence microscope by the method used for observation of the gamma subunit rotation (Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Nature 386, 299-302). The alpha3 beta3 gamma epsilon complex of TF1 was fixed to a solid surface, and fluorescently labeled actin filament was attached to the epsilon subunit through biotin-streptavidin. In the presence of ATP, the filament attached to epsilon subunit rotated in a unidirection. The direction of the rotation was the same as that observed for the gamma subunit. The rotational velocity was slightly slower than the filament attached to the gamma subunit, probably due to the experimental setup used. Thus, as suggested from biochemical studies (Aggeler, R., Ogilvie, I. , and Capaldi, R. A. (1997) J. Biol. Chem. 272, 19621-19624), the epsilon subunit rotates with the gamma subunit in F1-ATPase during catalysis. 相似文献