首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer hair cells (OHC) of the mammalian cochlea modulate the inner hair cell (IHC) mechanoelectrical transduction of sound. They are contacted by synapsing efferent neurons from the CNS, their main efferent neurotransmitter being acetylcholine (ACh). OHC function and in particular their control of [Ca2+]i is highly important and is modulated by ACh and also by other substances including extracellular (EC) ATP. OHC carry at their efferent synapse a not yet completely identified neuronal type of ionotropic ACh receptor (AChR), with an unusual pharmacology, which is, in vivo and in vitro, reversibly blocked by alpha-bungarotoxin (alpha-bgtx). The AChR mediates a fast influx of Ca2+ into OHC which, in turn, activates a closeby located outwardly-directed Ca(2+)-dependent K(+)-channel, thus shortly hyperpolarizing the cell. A cloned homomeric alpha 9 nAChR mimicks the function and pharmacology of this receptor. We here report results from a study designed to observe only slower effects triggered by EC ATP and the ACh-AChR system. EC presence of ATP at OHC increases [Ca2+]i by activating both P2x and P2y purinoceptors and also by indirect activation of OHC L-type Ca(2+)-channels. The L-type channel activation is responsible for a large part of the [Ca2+]i increase. Simultaneous EC presence of ACh and ATP at OHC was found to depress ATP-induced effects on OHC [Ca2+]i, an effect that is completely blocked in the presence of alpha-bgtx. Our observations suggest that the ACh-AChR system is involved in the modulation of the observed EC ATP-triggered events; possibly the OHC AChR is able to act both in its well known rapid ionotropic way, but also, perhaps after modification in a slower, metabotropic way interfering with the EC ATP-induced [Ca2+]i increase.  相似文献   

2.
3.
The elemental principles of calcium signaling   总被引:4,自引:0,他引:4  
  相似文献   

4.
The meiosis resumption process has been related to spontaneous cytoplasmic InsP3-dependent calcium oscillations in fully grown mouse oocytes. Our purpose was to determine whether the acquisition of meiotic competence during the growth phase of oogenesis was associated with that of Ca2+ oscillations and whether these oscillations were dependent on the phosphoinositide cycle. We used confocal laser scanning microscopy to image free calcium ions in fluo-3/AM-loaded oocytes recovered from 12- to 26-day-old mice for 15 min following follicular release. As expected, oocytes isolated from 12-day-old mice were totally incompetent to undergo GVB in vitro, whereas the GVB rate increased progressively with mouse age and oocyte diameter. The percentage of oocytes exhibiting spontaneous calcium oscillations and that of oocytes resuming meiosis were similarly correlated with the female age, with incompetent oocytes failing to exhibit spontaneous Ca2+ oscillations. It is noteworthy that regardless of the stage of growth, thapsigargin induced an ooplasmic calcium release from the InsP3-sensitive stores when it was added to the culture medium. However, intracytoplasmic microinjection of InsP3 induced a shorter sequence of Ca2+ oscillations in 12-day-old mouse oocytes than in 15-day-old mouse oocytes and, whereas InsP3 increased the GVB rate at 15 days, it was unable to induce GVB at 12 days. These data lead us to conclude that the acquisition of meiotic competence is related to the functionality of the InsP3 pathway and, correspondingly, to the oocyte's ability to generate spontaneous cytoplasmic InsP3-dependent calcium oscillations.  相似文献   

5.
Mechanisms and function of intercellular calcium signaling   总被引:3,自引:0,他引:3  
Intercellular Ca2+ waves initiated by mechanical or chemical stimuli propagate between cells via gap junctions. The ability of a wide diversity of cells to display intercellular Ca2+ waves suggests that these Ca2+ waves may represent a general mechanism by which cells communicate. Although Ca2+ may permeate gap junctions, the intercellular movement of Ca2+ is not essential for the propagation of Ca2+ waves. The messenger that moves from one cell to the next through gap junctions appears to be IP3 and a regenerative mechanism for IP3 may be required to effect multicellular communication. Extracellularly mediated Ca2+ signaling also exists and this could be employed to supplement or replace gap junctional communication. The function of intercellular Ca2+ waves may be the coordination of cooperative cellular responses to local stimuli.  相似文献   

6.
7.
8.
9.
Many cellular responses to extracellular stimuli are mediated by the second messenger inositol 1,4,5-trisphosphate (InsP3). InsP3 releases Ca2+ from intracellular stores by binding to an InsP3 receptor (InSP3R), which is an InsP3-gated Ca2+ release channel. The resultant increase in the cytoplasmic Ca2+ concentration modulates various cellular functions, such as gene expression, metabolism, proliferation, secretion, and neural excitation. In these signaling cascades, InsP3R works as a signal converter from InsP3 to Ca2+. We describe here structural and functional properties and localization of InsP3R, a key molecule in the Ca2+ signaling pathway.  相似文献   

10.
PURPOSE: To evaluate the involvement of cholesterol induced variations of membrane dynamics in mouse thymocyte apoptosis. MATERIALS AND METHODS: Membranes of thymocytes of RK mice were enriched with cholesterol using methyl-beta-cyclodextrins as carriers. Spontaneous apoptosis was compared with apoptosis induced either by X-irradiation, by treatment with dexamethasone (DEX), and by phorbol-12-myristate-13-acetate (PMA). Apoptotic cells were quantified by means of flow cytofluorometry. RESULTS: Small amounts of incorporated cholesterol enhance the cellular sensitivity for spontaneous apoptosis whereas larger amounts of incorporated cholesterol protect against spontaneous apoptosis and apoptosis induced by irradiation, DEX, or PMA. CONCLUSIONS: Cholesterol exerts specific rigidity effects on lipid membranes which have been shown to be involved in thymocyte apoptosis. The general effect of higher concentrations of cholesterol protecting against apoptosis hints towards a central protective mechanism. This study believes that either cholesterol paralyses great parts of the cell metabolism or that the apoptotic chain reaction is interrupted at a central point due to protection of membrane lipid regions from oxidative stress.  相似文献   

11.
Eighty-five subjects at various stages of human immunodeficiency virus (HIV-1) infection and 39 seronegative controls underwent neurological and neuropsychological evaluation to assess the relationship between cognitive test results and subjective complaints (cognitive, affective, motor, and other). The effect of psychiatric disorders on the association between cognitive performance and complaints of the patients was also examined. Patients with symptomatic infection had higher frequency of complaints than subjects at asymptomatic stage. Detailed neuropsychological examination confirmed a strong association between poor verbal memory and cognitive complaints. Poor performance on cognitive speed and flexibility was associated with motor complaints and motor abnormalities. These associations were not explained by psychiatric disorders or elevated depression questionnaire scores. Our observations indicate that, especially in symptomatic HIV-1 infection cognitive changes reported by patients often reflect "objective" cognitive decline, and may be the earliest signs of HIV-1 associated cognitive disorder. No direct relationship was observed between "subjective" complaints and neuropsychological performance of asymptomatic subjects. Understanding the significance of reported cognitive changes have important therapeutic implications.  相似文献   

12.
During prolonged application of glutamate (20 min), patterns of increase in intracellular Ca2+ concentration ([Ca2+]i) were studied in HEK-293 cells expressing metabotropic glutamate receptor, mGluR1alpha or mGluR5a. Stimulation of mGluR1alpha induced an increase in [Ca2+]i that consisted of an initial transient peak with a subsequent steady plateau or an oscillatory increase in [Ca2+]i. The transient phase was largely attributed to Ca2+ mobilization from the intracellular Ca2+ stores, but the sustained phase was solely due to Ca2+ influx through the mGluR1alpha receptor-operated Ca2+ channel. Prolonged stimulation of mGluR5a continuously induced [Ca2+]i oscillations through mobilization of Ca2+ from the intracellular Ca2+ stores. Studies on mutant receptors of mGluR1alpha and mGluR5a revealed that the coupling mechanism in the sustained phase of Ca2+ response is determined by oscillatory/non-oscillatory patterns of the initial Ca2+ response but not by the receptor identity. In mGluR1alpha-expressing cells, activation of protein kinase C selectively desensitized the pathway for intracellular Ca2+ mobilization, but the mGluR1alpha-operated Ca2+ channel remained active. In mGluR5a-expressing cells, phosphorylation of mGluR5a by protein kinase C, which accounts for the mechanism of mGluR5a-controlled [Ca2+]i oscillations, might prevent desensitization and result in constant oscillatory mobilization of Ca2+ from intracellular Ca2+ stores. Our results provide a novel concept in which oscillatory/non-oscillatory mobilizations of Ca2+ induce different coupling mechanisms during prolonged stimulation of mGluRs.  相似文献   

13.
In this paper, we show the importance of intracellular calcium (Ca2+) signaling systems in the pathophysiology of mood disorders based on our recent work. Patients with affective disorders appear to have an enhanced intracellular Ca2+ rise in response to serotonin. We have observed effects of antidepressant drugs on intracellular Ca2+ signaling in rat cultured neuronal cells and glioma cells, and found that acute application of several classes of antidepressant drugs inhibited intracellular Ca2+ signaling and Ca2+-related signaling. It is important to investigate the role of intracellular Ca2+ signaling system for an understanding of the pathophysiology of affective disorders.  相似文献   

14.
In vivo studies of lymphocyte biology have used intravenous (i.v.) injection as the primary mode of cell transfer, a protocol consistent with the anatomic distribution of most lymphocytes. However, for study of peritoneal cavity B cells, i.v. injection does not correlate with anatomical localization. This report describes the restoration of B-cell function in B lymphocyte-defective X-chromosome-linked immune-defective (XID) mice after intraperitoneal transfer of immunoglobulin heavy chain (Igh)-disparate peritoneal cavity (PerC) cells. In contrast to i.v. transfer, intraperitoneal (i.p.) transfer restored B-cell function in young, but not adult (> 8 weeks), XID mice. When host and donor Igh allotype matched, PerC B-cell engraftment was noted in older recipients; this reconstitution however, was also age-dependent. Migration from the peritoneum to systemic circulation was necessary for serum IgM production as shown by the presence of donor antibody-secreting cells in the host spleen. Host lymphocytes also influenced the success of i.p. transplantation as severe combined immune-deficient mice, regardless of age, exhibited donor serum IgM production. Recipient age, Igh allotype, and immune-deficiency were found to have an impact on the ability of i.p.-transferred PerC B cells to restore B-cell function in XID mice.  相似文献   

15.
Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein connexin43 (Cx43), are well dye coupled, and lack P2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P2U receptors; they propagated fast calcium waves that required release of intracellular calcium stores and activation of P2U purinergic receptors, but not gap junctional communication. ROS/P2U transfectants and UMR/Cx43 transfectants expressed both types of calcium waves. Gap junction-independent, ATP-dependent intercellular calcium waves were also seen in hamster tracheal epithelia cells. These studies demonstrate that activation of P2U purinergic receptors can propagate intercellular calcium, and describe a novel Cx43-dependent mechanism for calcium wave propagation that does not require release of intracellular calcium stores by IP3. These studies suggest that gap junction communication mediated by either Cx43 or Cx45 does not allow passage of IP3 well enough to elicit release of intracellular calcium stores in neighboring cells.  相似文献   

16.
It has been demonstrated that the lipid products of the phosphoinositide 3-kinase (PI3K) can associate with the Src homology 2 (SH2) domains of specific signaling molecules and modify their actions. In the current experiments, phosphatidylinositol 3,4, 5-trisphosphate (PtdIns-3,4,5-P3) was found to bind to the C-terminal SH2 domain of phospholipase Cgamma (PLCgamma) with an apparent Kd of 2.4 microM and to displace the C-terminal SH2 domain from the activated platelet-derived growth factor receptor (PDGFR). To investigate the in vivo relevance of this observation, intracellular inositol trisphosphate (IP3) generation and calcium release were examined in HepG2 cells expressing a series of PDGFR mutants that activate PLCgamma with or without receptor association with PI3K. Coactivation of PLCgamma and PI3K resulted in an approximately 40% increase in both intracellular IP3 generation and intracellular calcium release as compared with selective activation of PLCgamma. Similarly, the addition of wortmannin or LY294002 to cells expressing the wild-type PDGFR inhibited the release of intracellular calcium. Thus, generation of PtdIns-3,4,5-P3 by receptor-associated PI3K causes an increase in IP3 production and intracellular calcium release, potentially via enhanced PtdIns-4, 5-P2 substrate availability due to PtdIns-3,4,5-P3-mediated recruitment of PLCgamma to the lipid bilayer.  相似文献   

17.
We have used in vitro models of thymocyte positive and negative selection in conjunction with selective inhibitors of the TCR-mediated signaling cascade to investigate the intracellular signaling events that mediate these processes. We report that Ro 31.8425, a potent and selective inhibitor of protein kinase C, which blocks the activation of mature T cells in a dose-dependent fashion, has no effect on either positive or negative selection of CD4+8+ thymocytes. In contrast, cyclosporin A fails to prevent negative selection, but inhibits positive selection through a direct effect on developing thymocytes, rather than through the perturbation of stromal cell support. Thus, our data suggest that positive and negative selection may operate via distinct intracellular signaling pathways.  相似文献   

18.
Cold shock elicits an immediate rise in cytosolic free calcium concentration ([Ca2+]cyt) in both chilling-resistant Arabidopsis and chilling-sensitive tobacco (Nicotiana plumbaginifolia). In Arabidopsis, lanthanum or EGTA caused a partial inhibition of both cold shock [Ca2+]cyt elevation and cold-dependent kin1 gene expression. This suggested that calcium influx plays a major role in the cold shock [Ca2+]cyt response and that an intracellular calcium source also might be involved. To investigate whether the vacuole (the major intracellular calcium store in plants) is involved, we targeted the calcium-dependent photoprotein aequorin to the cytosolic face of the vacuolar membrane. Cold shock calcium kinetics in this microdomain were consistent with a cold-induced vacuolar release of calcium. Treatment with neomycin or lithium, which interferes with phosphoinositide cycling, resulted in cold shock [Ca2+]cyt kinetics consistent with the involvement of inositol trisphosphate and inositide phosphate signaling in this response. We also investigated the effects of repeated and prolonged low temperature on cold shock [Ca2+]cyt. Differences were observed between the responses of Arabidopsis and N. plum-baginifolia to repeated cold stimulation. Acclimation of Arabidopsis by pretreatment with cold or hydrogen peroxide caused a modified calcium signature to subsequent cold shock. This suggests that acclimation involves modification of plant calcium signaling to provide a "cold memory."  相似文献   

19.
The importance of intraerythrocytic organic phosphates in the allosteric control of oxygen binding to vertebrate hemoglobin (Hb) is well recognized and is correlated with conformational changes of the tetramer. ATP is a major allosteric effector of snake Hb, since the absence of this nucleotide abolishes the Hb cooperativity. This effect may be related to the molecular weight of about 32,000 for this Hb, which is compatible with the dimeric form. ATP induces a pH-dependent tetramerization of deoxyHb that leads to the recovery of cooperativity. This phenomenon may be partially explained by two amino acid replacements in the beta chains (CD2 Glu-43 --> Thr and G3 Glu-101 --> Val), which result in the loss of two negative charges at the alpha1beta2 interface and favors the dissociation into dimers. The ATP-dependent dimer left arrow over right arrow tetramer may be physiologically important among ancient animal groups that have similar mutations and display variations in blood pH that are governed by these animals' metabolic state. The enormous loss of free energy of association that accompanies Hb oxygenation, and which is also observed at a much lower intensity in higher vertebrate Hbs, must be taken into consideration in allosteric models. We propose that the transition from a myoglobin-like protein to an allosteric one may be of evolutionary significance.  相似文献   

20.
The T cell receptor (TCR) delta locus lies within the TCR alpha locus and is excised from the chromosome by V alpha-J alpha rearrangement. We show here that delta sequences persist in a large fraction of the DNA from mature CD4+CD8- alpha beta+ mouse thymocytes. Virtually all delta loci in these cells are rearranged and present in extrachromosomal DNA. In immature alpha beta lineage thymocytes (CD3-/loCD4+CD8+) and in CD4+CD8- alpha beta+ thymocytes expressing a transgene-encoded alpha beta receptor, rearranged delta genes are present both in chromosomal and extrachromosomal DNA. Thus, contrary to earlier proposals, commitment to the alpha beta lineage does not require recombinational silencing of the delta locus or its deletion by a site-specific mechanism prior to V alpha-J alpha rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号