首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征   总被引:1,自引:0,他引:1  
通过单向拉伸和分段式加载-卸载实验,研究了二维编织C/SiC复合材料的宏观力学特性和损伤的变化过程.用扫描电镜对样品进行微观结构分析,并监测了载荷作用下复合材料的声发射行为.结果表明:在拉伸应力低于50MPa时,复合材料的应力-应变为线弹性;随着应力的增加,材料模量减小,非弹性应变变大,复合材料的应力-应变行为表现为非线性直至断裂.复合材料的平均断裂强度和断裂应变分别为23426MPa和0.6%.拉伸破坏损伤表现为:基体开裂,横向纤维束开裂,界面层脱粘,纤维断裂,层间剥离和纤维束断裂.损伤累积后最终导致复合材料交叉编织节点处纤维束逐层断裂和拔出,形成斜口断裂和平口断裂.  相似文献   

2.
三维编织Cf/SiC复合材料的拉伸破坏行为   总被引:4,自引:6,他引:4  
通过三维编织碳纤维(carbon fiber,Cf)/SiC复合材料样品单向拉伸以及单向拉伸加卸载实验.结合样品断口观察.从宏观上分析了三维编织Cf/SiC复合材料单向拉伸时的力学响应,为进一步描述三维编织Cf/SiC复合材料力学行为奠定了实验基础。实验结果表明:三维编织Cf/SiC复合材料单向拉伸时,卸载模量衰减与应力呈线性关系,残余应变的增加与应力呈二次函数关系。微裂纹主要在编织节点处萌生,沿纤维束界面扩展,最终在编织节点处汇合,导致样品发生破坏。  相似文献   

3.
三维针刺C/SiC复合材料的结构特征和力学性能   总被引:3,自引:0,他引:3  
采用化学气相渗透法制备了在厚度方向上具有纤维增强的三维针刺碳纤维增强碳化硅(C/SiC)陶瓷基复合材料,复合材料的密度和气孔率分别为2.15 h/cm3和16%.三维针刺C/SiC复合材料中的针刺纤维将各层紧密结合在一起,其层间抗剪切强度显著提高,为95MPa,比二维碳布叠层C/SiC复合材料的剪切强度(35MPa)高171.4%.三维针刺C/SiC复合材料的拉伸强度和弯曲强度分别为159MPa和350MPa,断裂模式为非脆性断裂,包括:裂纹扩展、偏转,碳纤维的拉伸断裂和逐步拔出.  相似文献   

4.
化学气相渗透2.5维C/SiC复合材料的拉伸性能   总被引:2,自引:0,他引:2  
采用等温减压化学气相浸渗(isothermal low-pressure chemical vapor infiltration,ILCVI)工艺制备了在厚度方向上具有纤维增强的2.5维(2.5 dimensional,2.5D)碳纤维增强碳化硅多层陶瓷基复合材料,从而使一端封口的防热结构部件的制备成为可能.ILCVI致密化后,复合材料的密度、孔隙率分别为1.95~2.1 g/cm3和16.5%~18%.沿经纱和纬纱两个方向对2.5D C/SiC复合材料进行室温拉伸实验.结果表明:复合材料在纵向和横向的拉伸应力-应变均表现为明显的非线性行为.复合材料具有较高的面内拉伸性能,纵横向的拉伸强度分别为326MPa和145MPa,断裂应变分别为0.697%和0.705%.复合材料的拉伸断裂为典型的韧性断裂,经纱和纬纱的断裂都表现为纤维的多级台阶式断裂以及纤维的大量拔出.  相似文献   

5.
2D-SiC/SiC陶瓷基复合材料的拉伸本构模型研究   总被引:2,自引:0,他引:2  
通过单向拉伸试验,研究了2D-SiC/SiC复合材料的应力-应变行为.结果表明,材料单向拉伸应力-应变曲线表现出明显的双线性特征,且线弹性段较长.通过试件断口照片,分析了2D-SiC/SiC复合材料单向拉伸破坏机理和损伤模式.基于对损伤过程的假设,建立了二维连续纤维增强陶瓷基复合材料的双线性本构模型,并将其应用于2D-SiC/SiC复合材料的应力-应变曲线模拟,模拟结果与试验值吻合很好.同时,分析计算表明,2D-SiC/SiC复合材料的单轴拉伸行为主要由纵向纤维柬决定,横向纤维对材料的整体模量和强度贡献很小.  相似文献   

6.
通过对2种丝束平纹编织碳纤维布增强SiC(C/SiC)复合材料的力学性能实验,研究了纤维束丝数(1 k和3 k)对复合材料性能的影响.实验结果表明:1 k C/SiC复合材料的拉伸模量、拉伸强度、压缩模量、压缩强度、面内剪切强度和弯曲强度分别为90.8 GPa,281.8 MPa,135.8 GPa,452.2 MPa,464.3 MPa和126.8 MPa,分别比3 k C/SiC高39%,15.8%,25%,132%,29.3%和30.2%.纤维束粗细不同是导致纤维束弯曲度和复合材料孔隙率差异的主要原因,对压缩强度的影响最大,对拉伸强度的影响最小.  相似文献   

7.
研究了尼龙6的相对黏度对碳纤维增强复合材料的力学性能及其结构的影响。结果表明:碳纤维增强尼龙6复合材料的力学性能随尼龙6的相对黏度增加大而降低。碳纤维的质量分数为15%时,相对黏度为2.7的尼龙6的复合材料的拉伸强度和拉伸模量分别为179.6和11014 MPa;而相对黏度为2.0的尼龙6复合材料的拉伸强度和拉伸模量分别为220和14521MPa,分别提高了22.5%和31.8%。扫描电镜表明:碳纤维在不同尼龙6基体的复合材料中分散都比较均匀,复合材料断裂为纤维拔出断裂方式。  相似文献   

8.
单向Cf/SiC复合材料的弯曲疲劳性能   总被引:2,自引:1,他引:2  
对单向Cf/SiC复合材料进行了三点弯曲疲劳性能测试,得到了复合材料的应力-寿命曲线(S-N曲线),并对其进行线性拟合,得到疲劳最大应力与复合材料疲劳寿命的关系;考察了疲劳过程中刚度下降和疲劳裂纹产生情况。结果表明在疲劳过程中复合材料的弯曲模量有3个变化阶段:首先在疲劳加载初期,弯曲模量的下降速度及幅度都较大;其次在弯曲模量下降到原始弯曲模量的85%(133GPa)后,其变化方式没有明显的规律可循,有时甚至可能上升;最后复合材料发生疲劳断裂时,模量将发生突变。显微结构分析表明:基体横向裂纹群的产生是疲劳断裂的独有特征。它的产生是由于基体SiC的断裂应变小于碳纤维的断裂应变,基体首先开裂并导致应力重新分布的结果。  相似文献   

9.
《国外塑料》2009,27(4):70-70
T300碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的为拉伸强度达到5.5GPa,断裂应变高出T300碳纤维的30%的高强度中模量碳纤维T800H纤维。  相似文献   

10.
针对国内碳纤维拉伸模量的测试现状和国内外测试标准的区别,以国产QZ5526-12K聚丙烯腈(PAN)基碳纤维为研究对象,采用万能材料试验机比较了最大预载、应变范围、加载速度、引伸计标距和加强片等对模量测试的影响。结果表明,最大预载、应变范围和加强片等因素对拉伸模量的测试影响显著,而加载速度和引伸计标距等对拉伸模量的测试基本无影响。通过使用牛皮纸对固化后的纤维样条进行加强,当设置最大预载约为断裂载荷的10%、应变范围为0.1%~0.6%时,可以更加合理地表征高强中模碳纤维的模量。  相似文献   

11.
通过化学气相渗透法结合反应熔体浸渗法制备了三维针刺C/SiC复合材料,采用扫描电子显微镜观察材料的显微结构,并研究了无纬布纤维方向对材料力学性能的影响.结果表明,三维针刺C/SiC复合材料由O°无纬布层、短纤维胎网层、90°无纬布层以及针刺纤维束组成,无纬布层纤维方向对材料性能有显著影响.试样的拉伸强度和弯曲强度随着无纬布纤维方向与试样长度方向的夹角θ(0 ~45°)值的增大而减小,面内剪切强度和冲击韧性随θ角的增大而增大.  相似文献   

12.
Hui Mei  Laifei Cheng 《Carbon》2009,47(4):1034-1042
The mechanical hysteresis of four ceramic matrix composites with different carbon fiber preforms, i.e. needled C/SiC, 2D C/SiC, 2.5D C/SiC, and 3D C/SiC, was investigated and compared during cyclic reloading-unloading tests. An effective coefficient of the fiber volume fraction in the direction of loading (ECFL) was defined to characterize fiber architectures of the preforms. It is shown that an increase in permanent strain and a decrease in stiffness with the applied stress were strongly affected by the ECFL. The thermal residual stress (TRS) and ultimate tensile strength of the composites are predicted theoretically related to the ECFL, and then validated by experimental results and microstructural observations. The predicted results not only demonstrate good agreement with experimental measurements, but also explain why differences in the composite ECFL result in substantial variations in TRS.  相似文献   

13.
The microstructure, thermophysical, and ablative properties of a 3D needled C/C–SiC composite fabricated by chemical vapor infiltration combined with the liquid silicon infiltration process were investigated. The composite was composed of 64 wt% C, 20 wt% SiC, and 16 wt% Si. The thermal diffusivity in the plane direction was much higher than that in the through-the-thickness direction, while it was reversed for the coefficients of thermal expansion, and the differences reduced with increasing temperature. The linear and mass ablation rates in the oxyacetylene flame were 0.0039 mm/s and 0.0016 g/s on average, respectively. Various ablation processes including sublimation, thermochemical denudation, and oxidations occurred in different sections.  相似文献   

14.
《Ceramics International》2023,49(10):14989-14996
In this paper, the torsion and flexural-torsional coupled mechanical properties of different C/SiC torque tubes were investigated for the testing condition at room and elevated temperatures. Effects of fiber types, fiber preforms, and small hole during fabrication process on torsion mechanical properties were investigated. Flexural-torsional coupled mechanical tests for C/SiC torque tubes with different external diameter and wall thickness were conducted at room and elevated temperatures. The torsion and flexural moments and corresponding shear and flexural strength were obtained. The fracture surface and cracks propagation path were observed and analyzed. The torque and shear strength in T300™-3k torque tube were much higher than those of T300™-1k torque tube. Among 3D needled (3DN), 2D plain-woven [0°/90°] and [±45°] C/SiC torque tubes, the density, torque, and shear strength of 3DN-C/SiC torque tube were the highest. For the C/SiC torque tubes with small hole, the small hole not only increased the densification and uniformity (axial and radial) of the torque tube, but also has the potential to make the damage cracks more zigzag, which improved the fracture toughness of the torque tubes.  相似文献   

15.
This paper presents a micromechanical model to predict the time-dependent damage and deformation behavior of an orthogonal 3-D woven SiC fiber/BN interface/SiC matrix composite under constant tensile loading at elevated temperature in vacuum. In-situ observation under monotonic tensile loading at room temperature, load–unload tensile testing at 1200 °C in argon, and constant load tensile testing at 1200 °C in vacuum were conducted to investigate the effects of microscopic damage on deformation behavior. The experimentally obtained results led to production of a time-dependent nonlinear stress–strain response model for the orthogonal 3-D woven SiC/SiC. It was established using the linear viscoelastic model, micro-damage propagation model, and a shear-lag model. The predicted creep deformation was found to agree well with the experimentally obtained results.  相似文献   

16.
In this study, the digital image correlation (DIC) technique was applied to the tensile test of 2D needled C/SiC composites as a full-field measuring tool with the purpose of characterizing the tensile behavior of the material. The non-linear macroscopic tensile stress-strain curve was obtained. The relationship between the local non-linearity and the macroscopic non-linearity was investigated. The spot- and band-type strain field distributions were observed, and the evolution of the non-uniform strain field distribution was studied. The correlation between the strain field distribution and the structure of the needled preform of the material was also discussed.  相似文献   

17.
《Ceramics International》2022,48(21):31438-31448
Based on the consideration of matrix porosity and representative volume element of needled structure, the macroscopic elastic constants of needled C/SiC ceramic matrix composite and the stress concentration factor of the hole-edge were calculated by the finite element method first. Then, based on the fatigue test data of the smooth and central hole specimens, the fatigue notch factors corresponding to different stress levels were obtained. In view of the different characteristics of the fatigue notch factor obtained under different limit lives, the relationship between the fatigue notch and stress concentration factors was established, and the influence of nominal stress on the fatigue notch factor was also considered. Based on this, a fatigue life prediction method for central hole of needled C/SiC composite was proposed. The proposed method can predict the fatigue life of central hole by using the S–N curve of smooth specimen and the stress concentration factor of central hole specimen. The comparison between predicted and experimental lives showed that the proposed method can better predict the fatigue life of central hole specimen for needled C/SiC composite.  相似文献   

18.
The fatigue damage process of SiC coated needled C/SiC composite specimen was monitored by acoustic emission (AE) under tension-tension cyclic loading. By analyzing the collected AE parameters of the composite, it is found that Kaiser effect enhances with the increase of stable cycles in the fatigue process. Moreover, multivariate K-means cluster analysis of AE parameters was carried out after the standardization of energy, amplitude, peak frequency and duration of AE signal. By comparing the objective function values of different number of clusters, and referring to the intra group variance and the variance between groups, the damage modes of the needled C/SiC composite are finally divided into four clusters, and the characteristics of AE parameters with different damage modes can be obtained. Furthermore, by referring to the microstructure characteristics of needled C/SiC composite, various damage modes at different fatigue stages were analyzed. In addition, the fracture morphology of the specimen was also observed by scanning electron microscope after fatigue fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号