首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The present study attempts to develop a flow pattern indicator for gas–liquid flow in microchannel with the help of artificial neural network (ANN). Out of many neural networks present in literature, probabilistic neural network (PNN) has been chosen for the present study due to its speed in operation and accuracy in pattern recognition. The inbuilt code in MATLAB R2008a has been used to develop the PNN. During training, superficial velocity of gas and liquid phase, channel diameter, angle of inclination and fluid properties such as density, viscosity and surface tension have been considered as the governing parameters of the flow pattern. Data has been collected from the literature for air–water and nitrogen–water flow through different circular microchannel diameters (0.53, 0.25, 0.100 and 0.050 mm for nitrogen–water and 0.53, 0.22 mm for air–water). For the convenience of the study, the flow patterns available in literature have been classified into six categories namely; bubbly, slug, annular, churn, liquid ring and liquid lump flow. Single PNN model is unable to predict the flow pattern for the whole range (0.53 mm–0.050 mm) of microchannel diameter. That is why two separate PNN models has been developed to predict the flow patterns of gas–liquid flow through different channel diameter, one for diameter ranging from 0.53 mm to 0.22 mm and another for 0.100 mm–0.05 mm. The predicted map and their transition boundaries have been compared with the corresponding experimental data and have been found to be in good agreement. Whereas accuracy in prediction of transition boundary obtained from available analytical models used for conventional channel is less for all diameter of channel as compared to the present work. The percentage accuracy of PNN (~94% for 0.53 mm ID and ~73% for 0.100 mm ID channel) has also been found to be higher than the model based on Weber number (~86% for 0.53 mm ID and ~36% for 0.05 mm ID channel).  相似文献   

2.
In this paper, a modified compressible Reynolds equation for micro/meso scale gas foil journal bearings considering first order slip and effective viscosity under rarefied flow conditions is presented. The influence of rarefaction effect on the load carrying capacity, attitude angle, speed and frequency dependent stiffness and damping coefficients, modal impedance, natural frequencies and unbalance response is studied. From numerical analysis, it has been found that there is significant change in all the static and dynamic characteristics predicted by the no-slip model and model with effective viscosity. There is also a considerable difference between the values predicted by a model with effective viscosity and a model without effective viscosity. For a given eccentricity ratio, the influence of effective viscosity on load carrying capacity and attitude angle is more significant for the typical operating speed range of micro/meso scale gas turbines. The influence of effective viscosity decreases with increase in compliance of bearing structure. Similarly, the influence of effective viscosity on frequency dependent stiffness and damping coefficients increases with excitation frequency ratio. Significant change in natural frequency, modal impedance and unbalance response for model with no slip and slip with effective viscosity is observed. The influence of effective viscosity is found to be significant with increase in Knudsen number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号