首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

2.
Future regulations for the limitation of sulfur and aromatics in fuels driven by the European Auto Oil Program (AOP II) stimulate the need for an alternative utilization of the resulting surplus of pyrolysis gasoline (pygas). The conversion of heavy pyrolysis gasoline into valuable steam cracker feedstock with a maximum yield of C2–C4 n-alkanes is achieved via the ARINO® two-step process, jointly developed by Linde, VEBA Oil and Süd-Chemie. The first step involves a hydrogenation of aromatics to naphthenes followed by the subsequent ring opening and cracking in the second step.

Süd-Chemie developed a new commercial cracking catalyst for the second step of the ARINO® process with the aim to maximize the yield of C2–C4 n-alkanes at low formation of methane and aromatics. The ring opening and cracking reaction of naphthenes was studied in a bench scale tubular reactor over extruded H-ZSM-5 based zeolite catalysts.

In a series of screening tests using a commercial, hydrogenated and desulphurized heavy pyrolysis gasoline, the influence of the preparation parameters such as zeolite acidity, palladium content as well as the type of binder were investigated. Furthermore, the influence of the process conditions space velocity and temperature was studied.

High yields of C2–C4 n-alkanes at low formation of undesired methane and aromatics were achieved over an alumina bound zeolite with medium Brønsted acidity loaded with palladium.

The reduction of the space velocity resulted in an increase in the C2–C4 n-alkane yield and lower formation of aromatics, but a simultaneous increase in the methane make. Raising the temperature from 280 to 370 °C significantly increased the catalyst activity.  相似文献   


3.
Fourteen kinds of Chinese coal were flash hydropyrolysed in a small entrained reactor at 750°C and hydrogen atmosphere. The results indicated that carbon content and yields of liquid hydrocarbon, H/C and yields of gaseous hydrocarbon, oxygen content and yields of CO, CO2 and H2O show better corresponding relations. The correlations between yields of CH4, C2 and C2H6 and H/C can be expressed as YCH4=−42.2+100(H/C)(0.51<0.59), YCH4=15.8+1.67(H/C)(0.59<1.11), YC2=0.347+4.78(H/C), YC2H6=0.352+4.74(H/C); The correlations between yields of CO2 and water and oxygen content can be expressed as: YCO2=−0.0437+0.0355(O); YH2O=0.726+0.467(O). The cutoff points of flash hydropyrolysis for coal are that H/C is 0.6 and carbon content is 85%. The coal which H/C is lower than 0.6 and carbon content is higher than 85% is usually not good for flash hydropyrolysis. It is found that influence of coal rank on yields of liquid, gas product and total yields of product in flash hydropyrolysis can be expressed as of H/C in coal.  相似文献   

4.
The effect of the addition of a second fuel such as CO, C3H8 or H2 on the catalytic combustion of methane was investigated over ceramic monoliths coated with LaMnO3/La-γAl2O3 catalyst. Results of autothermal ignition of different binary fuel mixtures characterised by the same overall heating value show that the presence of a more reactive compound reduces the minimum pre-heating temperature necessary to burn methane. The effect is more pronounced for the addition of CO and very similar for C3H8 and H2. Order of reactivity of the different fuels established in isothermal activity measurements was: CO>H2≥C3H8>CH4. Under autothermal conditions, nearly complete methane conversion is obtained with catalyst temperatures around 800 °C mainly through heterogeneous reactions, with about 60–70 ppm of unburned CH4 when pure methane or CO/CH4 mixtures are used. For H2/CH4 and C3H8/CH4 mixtures, emissions of unburned methane are lower, probably due to the proceeding of CH4 homogeneous oxidation promoted by H and OH radicals generated by propane and hydrogen pyrolysis at such relatively high temperatures.

Finally, a steady state multiplicity is found by decreasing the pre-heating temperature from the ignited state. This occurrence can be successfully employed to pilot the catalytic ignition of methane at temperatures close to compressor discharge or easily achieved in regenerative burners.  相似文献   


5.
The reaction mechanism and the rate-determining step (RDS) of the isomerisation of n-alkanes (C4–C6) over partially reduced MoO3 catalysts were studied through the effects of the addition of an alkene isomerisation catalyst (i.e. CoAlPO-11). When an acidic CoAlPO-11 sample was mechanically mixed with the MoO3, a decrease of the induction period and an increase of the steady-state conversion of n-butane to isobutane were observed. These data support previous assumptions that a bifunctional mechanism occurred over the partially reduced MoO3 (a complex nanoscale mixture of oxide-based phases) during n-butane isomerisation and that the RDS was the skeletal isomerisation of the linear butene intermediates. The only promotional effect of CoAlPO-11 on the activity of partially reduced MoO3 for C5–C6 alkane hydroisomerisation was a reduction of the induction period, as the RDS at steady-state conditions appeared to be dehydrogenation of the alkane in this case. However, lower yields of branched isomers were observed in this case, the reason of which is yet unclear.  相似文献   

6.
A single-event microkinetic model (SEMK) is applied to model initial coking rates during the catalytic cracking of (cyclo)alkane/1-octene mixtures at 693–753 K and (cyclo)alkane and 1-octene inlet partial pressures of 26.6 and 4.8 kPa on a REUSY equilibrium catalyst. Three types of irreversible alkylations involving both gas phase and surface coke precursors, viz., alkylation of phenyl substituted carbenium ions with C3–C5 alkenes, alkylation of the nucleus of monoaromatics with C3–C5 alkylcarbenium ions, and alkylation of C8–C10 alkylcarbenium ions with C3–C5 alkenes, have been considered as rate-determining steps in coke formation. The bulky alkylated species formed out of these alkylations are considered as coke. The activation energies for these alkylations obtained via non-isothermal regression are independent of the feedstock within the parameters confidence limits reflecting the fundamental character of the SEMK. The negative effect of temperature on the experimentally observed coking rates is qualitatively described and is explained in terms of an overcompensation of the increase of the rate coefficient by a lower surface coke precursor concentration.  相似文献   

7.
A rotary kiln reactor was evaluated for thermal recovery of oil from Utah oil sands. A series of continuous-flow pyrolysis experiments was conducted. Process variables investigated included temperature (748–848 K), solids retention time (10–27 min) and sweep gas flow rate (1.27–2.83 ms3 h−1). The results indicated that the pyrolysis temperature and the solids retention time were the two most important variables affecting the liquid and gas yields. The liquid yield (C5+]) decreased and the gas yield (C1–C4) increased with increasing temperature. The liquid yield increased with decreasing solids retention time, while the gas yield decreased. No significant effect of the sweep gas flow rate on the product distribution and yields was observed. The quality of the bitumen-derived liquids was significantly better than that of the bitumen. A preliminary process kinetics model which conforms to the observed trends was proposed.  相似文献   

8.
The synthesis of cancrinite in the system Na2O–SiO2–Al2O3–Na2CO3–H2O was studied under low-temperature hydrothermal conditions in the 353 K<T<473 K interval. The aim was to reveal the suitable range for the crystallization of pure-phase carbonate cancrinite with the ideal composition Na8[AlSiO4]6CO3(H2O)2 without cocrystallization of sodalite or intermediate disordered phases between cancrinite and sodalite. It was found that cancrinite formation reacts very sensitive on the temperature within the autoclaves whereas the concentration of reactants and the alkalinity of the hydrothermal solution have a much lower influence on the phase formation. Thus the temperature of crystallization of carbonate cancrinite without any by-products should not remain below 473 K. At the lower reaction temperature of 353 K the formation of a disordered intermediate phase between the cancrinite and the sodalite structure has been obtained in every case, independent of the template concentrations and the base. Some problems to detect this in a typical powder product mixture are discussed. Besides the 29Si and 27Al MAS NMR characterization of the products, the crystal structure refinement of pure carbonate cancrinite of ideal composition Na8[AlSiO4]6CO3(H2O)3.4, has been carried out from X-ray powder data using the Rietveld method: P63, a=1271.3(1) pm, c=518.6(1) pm, RWP=0.073, RF=0.016 for 347 structure factors and 45 variable positional parameters.  相似文献   

9.
Characteristics of MnOy–ZrO2 and Pt–ZrO2–Al2O3 as reversible sorbents of NOx were investigated under dynamic changes in atmosphere. These sorbents can be used reversibly with a change of C3H8 concentration in the reaction gases. Catalytic reduction of NO occurred in the presence of propane, which was more pronounced on Pt–ZrO2–Al2O3 than on MnOy-ZrO2 due to high activity of Pt surface for this reaction on MnOy in MnOy–ZrO2. The sorption was observed as soon as the atmosphere changed from a reducing to an oxidizing one. This implies that a high equilibrium partial pressure of O2 is necessary for NO uptake since the sorbed NO3 species becomes stable. The beginning of NOx desorption atmospheres was somewhat dependent on the amount of stored NOx. The presence of propane in the gas phase strongly affected the characteristic sorption and desorption properties of MnOy–ZrO2 and Pt–ZrO2–Al2O3. The sorption and desorption properties are different for MnOy–ZrO2 and Pt–ZrO2–Al2O3, since the noble metal or metal oxide possesses unique activity for the NO reaction with C3H8 and the amount of oxygen available for oxidative sorption of NO.  相似文献   

10.
The reaction condition for high yield of methanol in a gaseous reaction between methane and oxygen in the presence of NO at atmospheric pressure was explored. Methane partial oxidation without NO (CH4–O2) gave only 1% conversion of methane at 966 K. The addition of NO led to a remarkable increase in methane conversion and to high selectivity to C1-oxygenates. The conversion of methane attained 10% at 808 K in the presence of NO (0.5%) where the selectivities to methanol and formaldehyde were 22.1 and 24.1%, respectively. Nitromethane and carbon oxides were also observed in the product gas. The amount of nitromethane was almost equal and/or near to that of initial NO. The carbon monoxide produced was several times higher than carbon dioxide. Influences of NO concentration, ratio of methane to oxygen, water vapor, and dilution with helium gas on product distribution were measured. Low concentration of NO (0.35–0.55%) was favorable for methanol formation. High selectivity to methanol was obtained at low value of the ratio of methane to oxygen (2.0–3.0) or low concentration of dilution gas (<16%). The NO2 added promoted methane partial oxidation and selectivity to methanol. Therefore, it was assured that NOx promoted the formation of CH3√ and CH3O√ in the gas phase reaction for CH4–O2–NO.  相似文献   

11.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al2O3 catalysts on the surface properties and reactivity for NO reduction by C3H6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al2O3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al2O3 and 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalysts calcined at 1073 K possess a CuAl2O4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C3H6 shows that the CuAl2O4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl2O4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl2O4 phase with high aggregation and preferential promotion of C3H6 combustion to COx by MnO2. The engine dynamometer test for NO reduction shows that the C3H6 is a more effective reducing agent for NO reduction than the C2H5OH. The maximum reactivity for NO reduction by C3H6 is reached when the NO/C3H6 ratio is one.  相似文献   

12.
A series of CoOx/Al2O3 catalysts was prepared, characterized, and applied for the selective catalytic reduction (SCR) of NO by C3H8. The results of XRD, UV–vis, IR, Far-IR and ESR characterizations of the catalysts suggest that the predominant oxidation state of cobalt species is +2 for the catalysts with low cobalt loading (≤2 mol%) and for the catalysts with 4 mol% cobalt loading prepared by sol–gel and co-precipitation. Co3O4 crystallites or agglomerates are the predominant species in the catalysts with high cobalt loading prepared by incipient wetness impregnation and solid dispersion. An optimized CoOx/Al2O3 catalyst shows high activity in SCR of NO by C3H8 (100% conversion of NO at 723 K, GHSV: 10,000 h−1). The activity of the selective catalytic reduction of NO by C3H8 increases with the increase of cobalt–alumina interactions in the catalysts. The influences of cobalt loading and catalyst preparation method on the catalytic performance suggest that tiny CoAl2O4 crystallites highly dispersed on alumina are responsible for the efficient catalytic reduction of NO, whereas Co3O4 crystallites catalyze the combustion of C3H8 only.  相似文献   

13.
The hydrogenation of CO over an Rh vanadate (RhVO4) catalyst supported on SiO2 (RhVO4/SiO2) has been investigated after H2 reduction at 500°C, and the results are compared with those of vanadia-promoted (V2O5–Rh/SiO2) and unpromoted Rh/SiO2 catalysts. The mean size of Rh particles, which were dispersed by the decomposition of RhVO4 after the H2 reduction, was smaller (41 Å) than those (91–101 Å) of V2O5–Rh/SiO2 and Rh/SiO2 catalysts. The RhVO4/SiO2 catalyst showed higher activity and selectivity to C2 oxygenates than the unpromoted Rh/SiO2 catalyst after the H2 pretreatment. The CO conversion of the RhVO4/SiO2 catalyst was much higher than that of V2O5–Rh/SiO2 catalyst, and the yield of C2 oxygenates increased. We also found that the RhVO4/SiO2 catalyst can be regenerated by calcination or O2 treatment at high temperature after the reaction.  相似文献   

14.
Molybdenum impregnated HZSM-5 zeolite catalysts with MoO3 loading from 1 to 8 wt.% were studied in detail for the selective catalytic reduction (C2H2-SCR) of NO by acetylene. A 83.9% of NO could be removed by the reductant at 350 °C under 1600 ppm of NO, 800 ppm of C2H2 and 9.95% of O2 in He over 2%MoO3/HZSM-5 catalyst with a specific activity of in NO elimination and the competitiveness factor (c.f.) of 33.6% for the reductant. The NO elimination level and the c.f. value were ca. 3–4 times as high as those using methane or propene as reductant over the catalyst in the same reaction condition. About same reaction rate was estimated in NO oxidation as that in the NO reduction over each xMoO3/HZSM-5 (x = 0–8%) catalyst, which confirms that NO2 is a crucial intermediate for the aimed reaction over the catalysts. Appropriate amount of Mo incorporation to HZSM-5 considerably enhanced the title reaction, both by accelerating the intermediate formation and by strengthening the adsorption NOx on the catalyst surface under the reaction conditions. Rather lower adsorption tendency of acetylene compared with propene on the catalysts explains the catalyst's steady performance in the C2H2-SCR of NO and rapid deactivation in the C3H6-SCR of NO.  相似文献   

15.
Catalytic properties of supported gallium oxides have been examined for the selective reduction of NO by CH4 in excess oxygen. The activity was greatly affected by the support; Ga2O3/Al2O3 (Al2O3 supported Ga2O3) and Ga2O3–Al2O3 mixed oxide exhibited high activity and selectivity as comparable to Ga-ZSM-5, while unsupported Ga2O3 and the other supported Ga2O3 were ineffective. For Ga2O3/Al2O3, the activity changed with Ga2O3 content, and was highest at about 30 wt% Ga2O3, which corresponds to a theoretical monolayer coverage. Gallium oxide highly dispersed on Al2O3 is considered to be responsible for the high activity and selectivity. The reaction characteristics of Ga2O3/Al2O3 were studied and compared with Ga-ZSM-5 and Co-ZSM-5. Ga2O3/Al2O3 exhibited the highest activity and selectivity at high temperature. In addition, Ga2O3/Al2O3 showed higher tolerance against water than Ga-ZSM-5. C3H8 and C3H6 were also evaluated as reducing agents, and Ga2O3/Al2O3 showed higher activity than Ga-ZSM-5 above 723 K achieving almost complete reduction of NO to N2.  相似文献   

16.
Tetrahydroborate sodalite formation was investigated in the system Na2O–SiO2–Al2O3–NaBH4–H2O under mild hydrothermal conditions. Due to the high degree of decomposition of hydroborates in aqueous solutions synthesis conditions were tuned by variation of the parameters alkalinity, liquid/solid ratio, reaction temperature and reaction time. The insertion of 8–16 molar NaOH solution was crucial for the higher stability of pure tetrahydroborate salt under strong alkaline conditions. Synthesis at 393 K and 24 h reaction time reveal tetrahydroborate sodalite Na8[AlSiO4]6(BH4)2 beside a small amount of amorphous material within the total batch. Structure, composition and thermal stability of this new sodalite was investigated using XRD, NMR, infrared and TG/DTA methods. The crystal structure of tetrahydroborate sodalite has been refined in the space group P-43n with a = 891.61(2) pm. The Si- and Al-atoms of the aluminosilicate framework are completely ordered. The boron atoms of the tetrahydroborate anions are located at the centre of the sodalite cage whereas the hydrogen atoms are positionally disordered. Na8[AlSiO4]6(BH4)2 shows a high stability under inert gas conditions. At atmospheric conditions the group can be oxidized to borate and boroxide anions suggesting the formation of hydrogen which leaves the sodalite cages. Future investigation of reloading properties of the oxidized form could be highly interesting for the hydrogen storage capabilities of these sodalites.  相似文献   

17.
The effects of minerals on product compositions from rapid pyrolysis of a Pittsburgh Seam bituminous coal were investigated. Whole, demineralized, and mineral treated samples of pulverized coal were heated in 100 KPa helium or 6.9 MPa hydrogen at 1000 K s?1 to temperatures of up to 1300 K. Yields of char, tar and individual gaseous products were determined as a function of time-temperature conditions. Clays, iron-sulphur minerals, and quartz had few effects on pyrolysis in helium. Calcium minerals decreased yields of hydrocarbon products and increased yields of CO in helium pyrolysis. Calcite and clays decreased yields of CH4 from hydropyrolysis, whereas iron-sulphur minerals had little effect on pyrolysis at 6.9 MPa H2. Whole coal results were similar to demineralized coal results under all conditions.  相似文献   

18.
Reaction mechanism of the reduction of nitrogen monoxide by methane in an oxygen excess atmosphere (NO–CH4–O2 reaction) catalyzed by Pd/H-ZSM-5 has been studied at 623–703 K in the absence of water vapor, in comparison with the mechanism for Co-ZSM-5. Kinetic isotope effect for the N2 formation in NO–CH4–O2 vs. NO–CD4–O2 reactions was 1.65 at 673 K and decreased with a decrease in the reaction temperature. In addition, H–D isotopic exchange took place significantly in NO–(CH4+CD4)–O2 reaction. These results are in marked contrast with the case of Co-ZSM-5, for which the C–H dissociation of methane is the only rate-determining step, and show that the C–H dissociation is slow but not the only rate-determining step in the case of Pd/H-ZSM-5.

A reaction scheme was proposed, in which the relative rates of the three steps ((i)–(iii) below) vary depending on the reaction conditions.

Further, in contrast to Co-ZSM-5, NOx–CH4–O2 reaction was much slower than CH4–O2 reaction for Pd/H-ZSM-5; the presence of NOx retards the reaction of CH4 over the latter catalyst, while it accelerates the reaction over the former. It is suggested that CH4 is activated directly by the Pd atoms in the case of Pd/H-ZSM-5, but by NO2 strongly adsorbed on Co ion for Co-ZSM-5. The reaction order of the NO–CH4–O2 reaction with respect to NO pressure was consistent with this mechanism; 1.05 for Pd/H-ZSM-5 and 0.11 for Co-ZSM-5.  相似文献   

19.
Selective catalytic reduction of NOx (SCR-NOx) with decane, and for comparison with propane and propene over Cu-ZSM-5 zeolite (Cu/Al 0.49, Si/Al 13.2) was investigated under presence and absence of water vapor. Decane behaves in SCR-NOx like propene, i.e. the Cu-zeolite activity increased under increasing concentration of water vapor, as demonstrated by a shift of the NOx–N2 conversion to lower temperatures, in contrast to propane, where the NOx–N2 conversion is highly suppressed. In situ FTIR spectra of sorbed intermediates revealed similar spectral features for C10H22– and C3H6–SCR-NOx, where –CHx, R–NO2, –NO3, Cu+–CO, –CN, –NCO and –NH species were found. On contrary, with propane –CHx, R–NO2, NO3, Cu+–CO represented prevailing species. A comparison of the in situ FTIR spectra (T–O–T and intermediate vibrations) recorded at pulses of propene and propane, moreover, under presence and absence of water vapor in the reaction mixture, revealed that the Cu2+–Cu+ redox cycle operates with the C3H6–SCR-NOx reactions in both presence/absence of water vapor, while with C3H8–SCR-NOx, the redox cycle is suppressed by water vapor. It is concluded that decane cracks to low-chain olefins and paraffins, the former ones, more reactive, preferably take part in SCR-NOx. It is concluded that formation of olefinic compounds at C10H22–SCR-NOx is decisive for the high activity in the presence of water vapor, while water molecules block propane activation. The increase in NOx–N2 conversion due to water vapor in C10H22–SCR-NOx should be connected with the increased reactivity of intermediates. These are suggested to pass from R–NOx → –CN → –NCO → NH3; the latter reacts with another activated NOx molecule to molecular nitrogen. The positive effect of water vapor on the NOx–N2 conversion is attributed to increased hydrolysis of –NCO intermediates.  相似文献   

20.
Low density polyethylene was dissolved into toluene and converted at 500 °C over three different commercial FCC catalysts in a laboratory Riser Simulator reactor. Short reaction-times up to 12 s were used. All the catalysts had qualitatively similar behaviors. The specific contribution of the polymer to the product slate of FCC was centered in hydrocarbons in the range of gasoline, with high aromatic content and highly olefinic C3–C4 gases. Saturated C4–C5 products were mainly isoparaffins. The additional coke formed by the polymer would make coke yields to increase moderately in relation to the standard operation. These facts confirmed that this recycling option, which is based on a proven technology, represents an interesting alternative to solve a major environmental problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号