首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the possibility of using polymerase chain reaction (PCR) for rapid identification of food-borne Listeria monocytogenes as an alternative to API Listeria system and estimates the incidence of API Listeria misidentifications in food-borne Listeria species. A total of 198 strains, 11 L. monocytogenes, 28 other Listeria species, and 159 food isolates were phenotypically and genotypically characterized by API Listeria profiles and randomly amplified polymorphic DNA (RAPD) profiles, respectively. They were also tested for PCR amplification using genus- and species-specific primers. Clustering analysis of phenotypic and genotypic data showed discrepancies in species identification of some isolates by API Listeria profiles. Their identities were confirmed by 16S rDNA sequencing, and thus, it was revealed that 33% of Listeria innocua and 19% of Listeria welshimeri were misidentified as L. monocytogenes by API Listeria profiles. Reliable identification of L. monocytogenes was obtained by LM1–LM2 specific primers which allowed PCR amplification only in reference strains and isolates previously identified as L. monocytogenes by RAPD and 16S rDNA sequence analysis. These results corroborate the suitability of specific PCR as a rapid and accurate test for the identification of L. monocytogenes, avoiding misidentification with other Listeria species commonly found in food products.  相似文献   

2.
Conventional internal amplification controls (IAC) are DNA-based controls which monitor the amplification reaction of real-time PCR in food pathogen detection. Food pathogen detection using real-time PCR, however, includes necessarily sample preparation and DNA isolation/purification. This modular structure leads to an analytical chain. To cover the whole analytical chain, the concept of the IAC has to be extended to internal sample process controls (ISPCs) which include supporting pre-analytical steps. One concept for such ISPCs is the use of recombinant bacterial cells comprising a deleted target and an artificial competitive target instead, which are derived from the actual target strain. In this work, we present an ISPC for the molecular detection of Listeria monocytogenes. A Δ-prfA L. monocytogenes EGDe strain was cloned with a pPL2 phage insertion vector to include a single copy artificial DNA target, resulting in a fluorescence signal not interfering with the respective signal of the L. monocytogenes EGDe wild-type strain during real-time PCR. The recombinant strain was confirmed and characterized with conventional and real-time PCR including sequencing. Microbiological examination revealed a distinct phenotype pattern on selective plate media which enables discrimination of Δ-prfA L. monocytogenes EGDe from wild-type L. monocytogenes EGDe and Listeria innocua. The ISPC was applied in an examination of artificially contaminated ultra high temperature-treated milk to demonstrate its analytical suitability. The resulting corrected recovery values of the ISPC as obtained by the whole molecular quantification procedure correspond to the respective values determined for the actual target strain (P ≤ 0.05).  相似文献   

3.
Intoxications and infections caused by food-borne pathogens represent an increasing public health problem, and diagnostic tests in multiplex format are needed for the rapid identification of food contaminations caused by more than one microbial species. We have developed a multiple PCR-based platform for the simultaneous detection of the widespread milk-associated pathogens Salmonella spp., Listeria monocytogenes and Escherichia coli O157. The assay combines an enrichment step in a medium properly formulated for the simultaneous growth of target pathogens, a DNA isolation method, and a multiplex Real-Time PCR detection system based either on dual-labelled probes (mRT-PCR), or on melting curve analysis (mHRM). The second, producing a distinct peak for each amplification product, allows the qualitative assessment of pathogen presence. Moreover, the internal amplification control (IAC) included in the reaction, ensuring the reliability of results, complies with quality management programmes. Inclusivity and exclusivity were 100% each, with a detection limit of 1 CFU for each pathogen in a total of five 25 ml-aliquots of raw milk, and a duration of two working days.The assay represents an alternative approach for the qualitative detection of the cited bacterial species, suitable for a relatively inexpensive screening of several milk samples, reducing the turnaround time and the workload.  相似文献   

4.
In the past two decades, serious outbreaks of foodborne disease were caused by Listeria monocytogenes, a pathogen frequently found in delicatessens at retail. Although the prevalence of listeriosis is not high, the severity of disease is significant, with high hospitalization and mortality rates. Potential sources of L. monocytogenes and food contamination routes in retail and food service operations include incoming raw materials, food products, food handlers, customers, vendors, and environmental sources. Risk mitigation strategies for L. monocytogenes should be based on integrated control along the food chain continuum, from farm to retail establishment.  相似文献   

5.
Listeria monocytogenes is the etiologic agent of listeriosis responsible for severe and fatal infections in humans. Listeria contamination occurs quite often in a wide range of foods due to its ubiquitous nature. Isolates need to be characterized to a strain level for accurate diagnosis of Listeria infection, epidemiological studies, investigation of outbreaks and effective prevention and control of food-borne listeriosis. The purpose of this research was to evaluate the multiple-locus variable number of tandem repeat analysis (MLVA) for sub-typing L. monocytogenes isolates in pure cultures and in food matrices. Two multiplex PCR assays were formulated to amplify six specific loci using fluorescently-labeled primers; and the amplicons were analyzed by capillary electrophoresis. The MLVA method resulted in 34 unique DNA fingerprint patterns from 46 L. monocytogenes isolates of 10 serotypes which had 29 or 30 PFGE patterns with a single restriction enzyme and 34 AFLP patterns. The MLVA patterns of the 46 isolates remained unchanged in the presence of pre-enriched food matrices including sausage, ham, chicken, milk and lettuce. The MLVA method successfully typed L. monocytogenes strains spiked in cheese, roast beef, egg salad and vegetable samples after 48 h enrichment at the initial inoculation levels of 1-5 CFU per 25 g of food or higher. The limits of detection (typing) of the MLVA method were 103-104 CFU/mL of pre-enriched food broth when evaluated using post-spiked sausage, ham, chicken, milk and lettuce samples. The MLVA method was simple, highly discriminatory, and easy to perform with portable (numerical) results. To our knowledge, this is the first report that describes the application of the MLVA method directly to food samples and demonstrates the possibility to obtain rapid and accurate subtyping results before an isolate is obtained.  相似文献   

6.
With the increased demand for lightly preserved and/or ready‐to‐eat (RTE) food products, the prevalence of the foodborne pathogen Listeria monocytogenes has increased, which is a public health concern. The goal for this review is to discuss the incidence, epidemiological importance, and contamination routes of L. monocytogenes in various aquatic ecosystems, seafood products, and processing environments and to summarize the data obtained since the 1990s. L. monocytogenes primarily enters the food‐production chain by cross‐contamination in production plants, making this pathogen a major threat to the seafood industry. This pathogen generally contaminates food products at low or moderate levels, but the levels involved in listeriosis outbreaks are significantly higher. The majority of isolates from aquatic products belong to serotype 1/2a, and outbreaks have been linked to highly similar or even indistinguishable strains. Several seafood‐processing plants are colonized by specific “in‐house” flora containing special DNA subtypes of L. monocytogenes. In such cases, L. monocytogenes populations can persist and/or multiply despite the inherent obstacles to their growth in food preservation and manufacturing operations. Therefore, food‐processing facilities must be designed carefully with an emphasis on effective cleaning and disinfecting operations in the production line.  相似文献   

7.
Listeria monocytogenes is an opportunistic pathogen that has been involved in several deadly illness outbreaks. Future outbreaks may be more difficult to manage because of the emergence of antibiotic resistance among L. monocytogenes strains isolated from food products. The present review summarizes the available evidence on the emergence of antibiotic resistance among L. monocytogenes strains isolated from food products and the possible ways this resistance has developed. Furthermore, the resistance of food L. monocytogenes isolates to antibiotics currently used in the treatment of human listeriosis such as penicillin, ampicillin, tetracycline, and gentamicin, has been documented. Acquisition of movable genetic elements is considered the major mechanism of antibiotic resistance development in L. monocytogenes. Efflux pumps have also been linked with resistance of L. monocytogenes to some antibiotics including fluoroquinolones. Some L. monocytogenes strains isolated from food products are intrinsically resistant to several antibiotics. However, factors in food processing chains and environments (from farm to table) including extensive or sub‐inhibitory antibiotics use, horizontal gene transfer, exposure to environmental stresses, biofilm formation, and presence of persister cells play crucial roles in the development of antibiotic resistance by L. monocytogenes.  相似文献   

8.
Listeria monocytogenes has been regarded as an emerging food pathogen responsible for listeriosis, a serious disease given its high mortality rate. The need for better food processing methods has led to an increased interest in high pressure processing (HPP), a novel nonthermal method presented as “producer” of safer food products. This review provides an overview of the effects of HPP on Listeria monocytogenes and on L. innocua, with the latter often used as an amenable surrogate for the pathogenic species. The factors that affect the susceptibility of listeriae to HPP, as well as the long-term implications of postprocessing recovery, are discussed in the perspective of the use of HPP to improve the safety of potential food vehicles.  相似文献   

9.
We present a new nucleic acid lateral flow immunoassay (NALFIA) for the assessment of listeria contamination. The detection procedure starts with enrichment of sample in Half Fraser broth (24 h). Following isolation of DNA, a duplex PCR is performed with two labelled primer sets, one generic and directed to a specific sequence of the gene encoding 16S rRNA from Listeria spp. and the other specific and directed to a part of the prfA gene encoding the central virulence gene regulator from the food pathogen Listeria monocytogenes (3.5 h). The PCR solution is directly added to the one-step assay device and the appearance of a grey/black line is indicative of the presence of specific amplicons (max 15 min). In all tests performed, the method correctly identified L. monocytogenes and strains of Listeria spp. PCR material of over 20 food samples was tested by NALFIA. The method proved to be useful for the detection of L. monocytogenes in different kinds of food samples.  相似文献   

10.
Recent outbreaks of listeriosis associated with consumption of milk products contaminated with Listeria monocytogenes have focused attention on the importance of food-borne transmission of this disease. This review outlines current knowledge of the incidence of L monocytogenes in raw milk and its incidence in, and ability to survive, the manufacturing process for other dairy products—notably soft cheeses. Discrepancies in results obtained by researchers concerning growth of the organism at refrigeration temperatures and the bacterium's ability to survive pasteurisation are discussed.  相似文献   

11.
Listeria monocytogenes is a food‐borne bacterial pathogen that is associated with 20% to 30% case fatality rate. L. monocytogenes is a genetically heterogeneous species, with a small fraction of strains (serotypes 1/2a, 1/2b, 4b) implicated in human listeriosis. Monitoring and source tracking of L. monocytogenes involve the use of subtyping methods, with the performance of genetic‐based methods found to be superior to phenotypic‐based ones. Various methods have been used to subtype L. monocytogenes isolates, with the pulsed‐field gel electrophoresis (PFGE) being the gold standard. Although PFGE has had a massive impact on food safety through the establishment of the PulseNet, there is no doubt that whole genome sequence (WGS) typing is accurate, has a discriminatory power superior to any known method, and allows genome‐wide differences between strains to be quantified through the comparison of nucleotide sequences. This review focuses on the different techniques that have been used to type L. monocytogenes strains, their performance challenges, and the tremendous impact WGS typing could have on the food safety landscape.  相似文献   

12.
The ability of L. monocytogenes to grow in a series of Japanese ready-to-eat (RTE) foods, including boiled baby sardine and Japanese pickle, was tested at two different refrigeration temperatures. In RTE foods in which L. monocytogenes can grow, growth was significantly higher at 10°C than that at 4°C during their shelf lives and growth patterns varied extensively among the different types of foods. However, growth did not occur at 4°C within the shelf life of certain RTE foods, such as broiled squid. The patterns of growth were varied extensively with different sample types. These results suggest that some types of traditional Japanese RTE foods stored at 10°C may be potential sources of listeriosis. To reduce the risk of food-borne listeriosis, studies to determine the contamination levels in RTE foods and the effects of storage temperature on their shelf lives are needed.  相似文献   

13.
The sensitivity of criteria in detecting unsafe food was studied for a hypothetical ready-to-eat food supporting growth of Listeria monocytogenes during storage. The effects of the prevalence of the pathogen and of the duration of the shelf-life on the probability for servings to be unsafe and on the probabilities of detecting unsafe food were evaluated. The results obtained in this example show that the probability for servings to be unsafe increases with the prevalence and the shelf-life while the probabilities of detecting unsafe food depend above all on the prevalence of the pathogen. The current criteria used for L. monocytogenes can then sometimes be relatively ineffective to prevent the consumption of unsafe food with regard to the shelf-life of foods. The exposure assessment approach described in this study could be used to establish shelf-lives consistent with a defined acceptable risk.  相似文献   

14.
15.
A case of listeriosis was associated with the consumption of a soft cheese produced in England. Goats cheese and other products from the same food manufacturer were examined for the presence of Listeria over the following 11 months. Listeria monocytogenes was isolated from 16 of 25 cheese samples on retail sale, 12 of 24 cheese samples obtained directly from the factory, and from shelving within the plant. Phage-typing of 68 isolates of L. monocytogenes from cheese samples and the factory showed that 66 (97%) were indistinguishable from the strain isolated from the patient's cerebrospinal fluid and stool. L. monocytogenes was not isolated from seven goats milk or two yoghurt samples. Listeria innocua was isolated from 10 cheese samples, two of which contained no other species of Listeria. Levels of L. monocytogenes shortly after production were low (<10/g), but were higher (105–107 cfu/g) in six of the 16 cheese samples obtained from retail outlets. Multiplication of L. monocytogenes was demonstrated in cheeses contaminated at the factory and held at 4°C in the laboratory.  相似文献   

16.
The purpose of this study was to develop a real-time quantitative loop-mediated isothermal amplication (LAMP) method for the rapid, sensitive, and convenient detection of Listeria monocytogenes in food. The LAMP method could amplify the hlyA gene of L. monocytogenes successfully at 63°C with a loopamp real-time turbidimeter. The detection limits of the LAMP for hlyA gene were 6 colony forming units (CFU)/tube. A standard curve was generated for L. monocytogenes LAMP by plotting the graph based different log CFU values of L. monocytogenes and time of positivity through real-time monitoring of the amplication. Then, the LAMP method was employed to test 94 retail food samples effectively. Sensitivity in detection of L. monocytogenes by the LAMP was higher than that of PCR and none of the conventional methodpositive samples was missed by the LAMP method.  相似文献   

17.
The polymerase chain reaction (PCR) is one of the most important rapid methods for the sensitive and specific detection of pathogenic and spoilage microorganisms. The method is increasingly applied in surveillance and monitoring programs to detect pathogens, especially for ensuring the safety and quality of food. The food-borne pathogen Salmonella together with Campylobacter is the most predominant bacterial pathogen in Europe, causing approximately 160,000 confirmed human cases per year. During the last two decades, the importance of Salmonella for food safety triggered the development of dozens of PCR-based detection methods. They promise significant advantages compared to the traditional culture-based methods with respect to speed, easiness, reliability, sensitivity, cost effectiveness, and automation. However, many of them are not applicable because of lacking validation procedures. Meanwhile, PCR has internationally been standardized and guidelines as well as standards for the validation of alternative methods, such as PCR, were established. This review will give an overview of the historical development of PCR-based methods for the detection of Salmonella including validation aspects and summarizes the state-of-the-art for the detection of Salmonella in food and feeding stuff by real-time PCR. Furthermore, current multiplex PCR-based serovar-specific identification methods will be reviewed.  相似文献   

18.
This study was undertaken to investigate the contamination pattern of Listeria monocytogenes in local Chinese food markets and to trace two clinical isolates. Random amplification polymorphic DNA (RAPD) was developed to track the source of L. monocytogenes in ready-to-eat (RTE) food products and from clinical origin. Three random primers, PB1, PB4 and HLWL74, were used to subtype all the L. monocytogenes strains isolated from RTE food products, fresh food products, environmental sewages in the markets and two clinical meningitis patients. It was shown that all the 49 isolates could be classified into 5, 4 and 4 types using these three random primers, PB1, PB4, and HLWL74, respectively. Twenty-seven composite profiles were identified by a combination of the three primers. The same composite profiles of L. monocytogenes could be found both in the fresh food products, environmental sewages and RTE food products, suggesting that the L. monocytogenes in the RTE food products may come from those in the fresh food products or sewage in the same market. The composite profiles of the two clinical isolates were the same as those of strains isolated from RTE food products, indicating that the disease might have resulted from the consumption of the RTE food products contaminated with L. monocytogenes. The results show that RAPD could be a powerful tool for the investigation of contamination pattern of L. monocytogenes in Chinese food markets and also for tracking the source of L. monocytogenes in clinical patients.  相似文献   

19.
Listeria monocytogenes is a growing concern in the food industry as it is the causative agent of human listeriosis. There are many research articles concerning the growth, survival, and diversity of L. monocytogenes strains isolated from food‐related sources, elucidating the difficulty in controlling these bacteria in a food‐processing facility. Bacteriophage biocontrol of L. monocytogenes strains was introduced in 2006, through the first commercial bacteriophage product targeting L. monocytogenes ListShieldTM. This review focuses on the use of bacteriophage biocontrol to target L. monocytogenes in the food industry, specifically direct application of the bacteriophages to food products. In addition, we discuss characteristics of these bacteria that will have a significant influence on the effective treatment of bacteriophages such as genetic diversity between strains prevalent in one facility. There are many positive results of phage treatments targeting L. monocytogenes in food; however, success of in vitro studies might not be reproducible in practice. Future studies should focus on creating experimental design that will imitate the conditions found in the food industry, such as a stressed state of the targeted bacteria. In situ evaluation of bacteriophage treatment of L. monocytogenes will also be necessary because the presence of these bacteria in a processing facility can vary greatly regarding genetic diversity. The potential use of phages in the food‐processing facility as a biosanitizer for L. monocytogenes, as well as the use of lysins to target these bacteria should also be explored. Despite the exciting research avenues that have to be explored, current research shows that biocontrol of L. monocytogenes is feasible and has potential to positively impact the food industry.  相似文献   

20.
The present work is focused on the development of a TaqMan multiplex real-time PCR method for the detection of Salmonella, Shigella and L. monocytogenes in seafood, meat and ready-to-eat products. The aim of this study is to detect the three pathogens in one single test including an enrichment medium for the simultaneous growth of the bacteria of interest and an Internal Amplification Control (IAC) to monitor PCR inhibitors. For this purpose, three genes were selected, invA for Salmonella, ipaH for Shigella and hlyA for L. monocytogenes. Also, no. 17 broth without dextrose and further modified by adding Tween 80 was used for the enrichment step. Specificity of the method was checked against a panel of 24 non-target bacterial strains. RT-PCR efficiency obtained for the simultaneous amplification of all three pathogens was 102.5% for Salmonella, 108.9% for Shigella and 106.4% for L. monocytogenes. The limit of detection (LOD) was evaluated in seafood, meat and ready-to-eat products, being established within 3 and 22 cfu in 25 g of sample for the three bacteria analyzed. Seventy-eight samples were analyzed with multiplex RT-PCR including spiked and natural samples collected from different laboratories. Even though several RT-PCR methods have been developed for the detection of Salmonella, Shigella and L. monocytogenes, as far as we know this is the first method developed for the simultaneous detection of these three pathogens, coupling RT-PCR with an enrichment in the same broth and being tested in a wide range of different processed food samples with a low LOD. The application of this method can significantly reduce costs and time of analysis in laboratories, what would be reflected in a faster response in those risk situations when they are detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号