首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
李智博  张贺宗  郭建 《中国冶金》2005,15(11):30-32
通过对12Cr1MoV低合金钢管试验及分析,结果表明,其力学性能符合标准.焊缝及热影响区组织为贝氏体 铁素体,焊缝和细晶区晶粒细小、显微硬度较高;粗晶区晶粒粗大、硬度较低;基体组织为铁素体 珠光体,硬度更低.总体焊接性能良好,尚能满足使用要求.  相似文献   

2.
桥梁钢Q420q要求同时具有优异的强韧性和良好的可焊性,焊接热影响区(HAZ)的显微组织和性能直接影响构件焊接接头质量。20 mm厚度控轧控冷型Q420qD钢板在不进行焊前预热和焊后热处理条件下进行焊接试验,并针对其焊接热影响区的组织和性能展开分析研究。结果表明:当焊接线能量为15 kJ/cm时,焊接接头的力学性能达到国家标准;焊接接头各区域断口均由韧窝组成,呈现韧性断裂形貌;-20℃冲击功≥279 J,超过国家标准要求值;焊接接头区域未出现明显的软化、硬化现象;焊缝显微组织以针状铁素体为主,能有效阻碍裂纹扩展;熔合线显微组织包含粒状贝氏体、侧板条铁素体、针状铁素体和多边形铁素体;粗晶区的显微组织为粒状贝氏体、板条贝氏体、针状铁素体及少量多边形铁素体的混合组织;细晶区的显微组织为大量多边形铁素体、珠光体及少量渗碳体。  相似文献   

3.
采用光学显微镜、扫描电镜、维氏硬度计、万能试验机等设备对不同闪光电流密度、闪光电压条件下380 CL车轮钢闪光对焊接头的显微组织和力学性能进行了研究,结果表明:380 CL车轮钢闪光对焊接头显微组织可划分为界面区、粗晶区、重结晶区、部分重结晶区四个部分;闪光电流和闪光电压不同,焊接接头各个区域的显微组织存在较大差异,热输入量越大晶粒尺寸越粗大;焊缝熔合线处的组织包括块状铁素体+魏氏体+渗碳体,组织尺寸较粗大;闪光电压升高,焊缝处魏氏体组织和渗碳体增多,焊缝处的硬度峰值较高,硬度下降趋势减缓,塑韧性降低;当380CL级车轮钢闪光对焊熔合线结晶良好、无焊接缺陷时,焊接接头峰值硬度虽然较母材高16.67%~43.84%、出现马鞍点,但是焊接接头拉伸及弯曲性能依然良好,熔合线处未出现裂纹和断裂。  相似文献   

4.
采用激光焊、80%Ar+20%CO_2混合气体保护焊匹配CHW-60C焊丝,对HR800CP复相高强钢板进行了焊接,对其焊接接头的显微组织与力学性能进行了研究。结果表明:激光焊缝的焊缝中心和热影响区组织为马氏体和贝氏体,焊缝中心和热影响区硬度值均高于母材,弯曲180°时未出现沿焊缝的开裂情况,接头抗拉强度为799 MPa,低于母材的抗拉强度,原因是焊缝的表面有凹陷。混合气体保护焊接头焊缝组织为针状铁素体、块状铁素体,粗晶区组织为板条状马氏体+贝氏体组织,正火区组织以贝氏体为主,熔合线附近存在相对较软的区域,接头的抗拉强度755 MPa,低于母材的抗拉强度。  相似文献   

5.
在不同焊接参数下分别通过Φ3 mm E4303碳钢焊条(/%:≤0.12C、≤0.25Si、0.30~0.60Mn)和Φ1mm H10MnSi焊丝(/%:0.14C、0.65~0.95Si、0.80~1.10Mn)对3.8 mm DP590钢薄板(/%:0.07C、0.45Si、1.61 Mn)进行手工电弧焊接和CO2气体保护焊接,并利用ZEISS光学显微镜、LEICA显微硬度计分别对焊接接头的组织和显微硬度进行了观察和分析。结果表明,在焊缝区手工电弧焊焊缝组织为沿柱状晶分布的先共析铁素体和珠光体,CO2气体保护焊为针状铁素体和少量贝氏体,在粗晶区手工电弧焊为贝氏体和先共析铁素体,CO2气体保护焊为板条马氏体和贝氏体,且其粗晶区晶粒尺寸大于手工电弧焊;采用CO2气体保护焊,选择较大的热输入,焊缝和粗晶区的魏氏组织消失;显微硬度最大值均出现在粗晶区,手工电弧焊的热影响区宽度小于CO2气体保护焊。  相似文献   

6.
杨雄  李鹏 《宽厚板》2023,(1):6-9
对60 mm厚度中温压力容器用钢15CrMoR进行埋弧焊接(SAW)试验,研究钢板焊态和焊后热处理态焊接接头的组织及性能。结果表明:焊态和焊后热处理态焊缝的组织均为针状铁素体+粒状贝氏体+先共析铁素体,粗晶区组织均为贝氏体,而细晶区组织稍有差别,其中,焊态细晶区组织为粒状贝氏体+铁素体+珠光体,焊后热处理态细晶区组织为粒状贝氏体,热处理前、后显微组织无显著变化。性能指标说明15CrMoR钢焊缝处强度高于母材,焊后热处理提高了焊接接头的低温冲击性能,降低了焊接接头硬度,具有较低的冷裂纹倾向,可焊性更好。  相似文献   

7.
12%Cr铁素体不锈钢的焊接热影响区组织特征   总被引:1,自引:0,他引:1  
针对12%Cr铁素体不锈钢,利用光学显微镜、扫描电镜,对在不同焊接热输入条件下的显微组织种类进行观察,得出热影响粗晶区的组织变化规律;应用Thermal-cal软件,确定了12%Cr铁素体不锈钢在焊接热循环条件下发生相变的温度区间,以及微合金元素Ti和Nb的析出相图.给出在焊接热循环作用下,改善铁素体不锈钢焊接接头热影响区韧性的建议,即焊接热影响粗晶区存在适量的马氏体;钢中添加微量元素Ti可抑制粗晶区晶粒长大,其作用优于Nb.  相似文献   

8.
 采用CO2焊接方法焊接X100管线钢,分析了不同焊接工艺下焊接接头组织和性能的变化特征。随着焊接热输入的增加,焊接接头的屈服强度和抗拉强度降低,焊缝和热影响区处的冲击吸收功呈现先增大后减小的变化趋势,而焊缝组织均以针状铁素体(AF)为主。焊接热输入为1.17 kJ/mm时,粗晶区的显微组织主要是贝氏体铁素体(BF),强韧匹配性最为优异;当热输入增加至1.91 kJ/mm时,粗晶区的组织除了BF外,还出现了粒状贝氏体(GB),强韧水平明显降低。综合考虑,可将1.17 kJ/mm作为X100管线钢CO2焊接时的最佳热输入。  相似文献   

9.
工业化试制了3种厚度规格(20,26和36mm)的新型低成本高焊接性能船板钢EH36。试制钢板的显微组织由多边形铁素体和针状铁素体构成,其力学性能满足EH36级别船板要求并具有优异的低温韧性。采用焊接热模拟评价了钢板的焊接性能,当热输入由30kJ/cm升高至160kJ/cm时,粗晶区原奥氏体晶粒尺寸逐渐增大,其组织也逐渐由粒状贝氏体向晶界铁素体+晶内针状铁素体+晶内多边形铁素体转变,维氏硬度逐渐下降,低温韧性优异。得益于TiN粒子对奥氏体晶粒长大的抑制作用,微量B元素对先共析铁素体转变的抑制作用以及BN粒子对晶内铁素体形核的促进作用,焊接粗晶区获得了有利于韧性的细化组织,保证了粗晶区具有优异的低温韧性。双丝埋弧焊试验也验证了钢板具有优异的焊接性能。  相似文献   

10.
研究了X65管线钢不同级别带状组织对焊接接头的显微组织和力学性能的影响.试验结果表明,焊接接头焊缝处有典型的焊缝组织贝氏体,热影响区含有少量的魏氏体、珠光体、晶内成核铁素体和多边形铁素体组织,焊接接头的拉伸断裂部位在焊缝处;带状组织越严重,焊接后的钢板强度和韧性均变差,因此在X65管线钢生产中要严格控制带状组织的形成.  相似文献   

11.
Since 1989, Nordic industries, organizations and universities have co‐operated in numerous projects related to the design and fabrication of welded structures. In a current ongoing project, QFAB, over 20 participants are working together to improve the design, fabrication and cost effectiveness of complex welded structures. This paper describes the background to this project and will also discuss the process of quality assessment of welded construction machinery. The main part of the supporting framework on vehicles consists of welded steel structures. These welds contain defects and imperfections from the weld process itself and when severe load conditions are present, a finite life is at hand. The competition among manufacturers towards higher productivity and lower fuel consumption drives the engineers to design lighter structures preferably in high strength material. Such a design requires a higher weld quality and calls special attention to design and manufacturing of welds. A major issue is thus to form a scientific and consistent base which can be used when analysis and design is integrated with production and quality inspection of components. The goal is to build world class vehicles for operation without failures in service during the economic life.  相似文献   

12.
The elastoplastic transition in welded low-carbon steel samples is considered. Two methods of manual arc welding of floating-electrode type are employed: a traditional steady arc; and pulsed welding with controlled heat consumption. In terms of the structural characteristics and mechanical properties of the welded metal, the methods are identical. In both cases, extended elastoplastic transition by the nucleation and propagation of Luders bands is observed. However, the underlying process is different. In the traditional steady arc, the Luders bands are formed in the applied metal initially as diffuse regions where the deformation is localized. These regions fill the seam and convert it to the plastically deformed state. The moving fronts of the bands are finally shaped in the thermal-influence zones and pass to the basic metal. The velocity and morphology of the fronts match those of fronts in uniform objects of the same steel. When using a pulsed arc, Luders bands appear some distance from the weld seam, at the clamps of the loading device. Up to the thermal- influence zones, the velocity and morphology of the fronts correspond to those for the basic metal. At the fusion boundary, the front stops and forms the nucleus of a new band, which expands in the seam metal. This new band first transforms the applied metal to the deformed state and then creates a moving front in the opposite thermal-influence zone. The velocity of the front differs by an order of magnitude in the applied metal and the basic metal. The weld seam determines the nucleation of Luders bands. An explanation is offered for the different origins of the elastoplastic transition in the two welding methods. In traditional welding with a steady arc, the local long-range stress is considerably higher in the thermal-influence zones than in the basic metal. Therefore, the nucleation of Luders bands is a relaxational process in this case. In pulsed arc welding, the local long-range stress is higher in the basic metal, where the Luders bands appear. The results may be used in selecting the test conditions for power-system equipment.  相似文献   

13.
The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (ΔT) calculated by solidification simulation based on Scheil model. ΔT increased with increasing content of alloying elements such as niobium. The distribution of ΔT was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in ΔT and the segregation behavior of niobium with the chemical composition.  相似文献   

14.
The prediction model has been developed for steel weld metal microstructural constituents as a function of flux ingredients such as CaO, MgO, CaF2 and Al2O3 in submerged arc welding carried out at fixed welding parameters. The results of quantitative measurements of micro‐structural constituents on eighteen weld metal samples were utilised for developing the prediction equations of microstructural constituents applying statistical design of experiment for mixtures. Among the flux ingredients, CaO appears to be most important as an individual as well as interaction with other ingredients viz. CaF2 and Al2O3 in influencing the amount of microstructural constituents in weld metal. The prediction equations have been checked for adequacy by performing tests on welding using randomly designed flux and found satisfactory. The iso‐response curves were developed for selected microstructural constituents to show their output levels at different percentage of flux ingredients.  相似文献   

15.
In Part II of this series of articles, the transient thermal model, which was introduced in Part I, is used to explore the effects of welding conditions on the heat generation and temperature. FSW of the 6061-T651 aluminum alloy is modeled to demonstrate the model. The following two steps are adopted to study the influence of welding conditions on the heat generation and temperature. First, the thermal model is used to compute the heat generation and temperature for different welding conditions, the calculated results are compared with the reported experimental temperature, and a good agreement is observed. Second, the analytical method is used to explore the approximate functions describing the effect of welding conditions on the heat generation and temperature. Based on the computed results, we discuss the relationship between the welding conditions, heat generation, temperature, and friction coefficient, and propose a relationship map between them for the first time at the end.  相似文献   

16.
17.
The present study aims at understanding the effect of various arc welding processes on the evolution of microstructure, mechanical properties, residual stresses and distortion in 9 mm thick type 316LN austenitic stainless steel weld joints. Weld joints of type 316LN stainless steel were fabricated by three different arc welding processes which were commonly employed in the nuclear industry. All the weld joints passed radiographic examination. Microstructural characterization was done using optical and scanning electron microscope. Volume fraction of δ-ferrite was lowest in the A-TIG weld joint. The A-TIG welded joint exhibited adequate strength and maximum impact toughness values in comparison to that of weld joints made by SMAW and FCAW processes. The A-TIG weld joint was found to exhibit lowest residual stresses and distortion compared to that of other welding processes. This was attributed to lower weld metal volume and hence reduced shrinkage in the A-TIG weld joint compared to that of weld joints made by FCAW and SMAW processes which involved v-groove with filler metal addition. Therefore, type 316LN stainless steel A-TIG weld joint consisting of lower δ-ferrite, adequate strength, high impact toughness, lower residual stresses and distortion was suited better for elevated temperature service compared to that of SMAW and FCAW weld joints.  相似文献   

18.
对于由不同材料焊接组成的部件,尤其是热处理工艺差异较大的不同材料焊接组成的部件,为保证各组成零件能满足设计和应用所要求的性能,需选择适宜的焊后热处理工艺参数.本文对GH141和GH907高温合金焊接组件的热处理方案进行了探讨.  相似文献   

19.
文章主要介绍了将电焊机极向改为直流正接,通过改变手法,由"正抬弧"改成"反抬弧",使背面凸出板面2 mm以上.此手法填补了焊接书籍里所没有介绍的直流J506[E5016]焊条焊接仰平脸的焊接手法,为以后建筑行业提供一条可行范例.  相似文献   

20.
42CrMo齿轮轴焊补工艺   总被引:3,自引:0,他引:3  
马延恒 《山东冶金》2003,25(3):67-69
针对中碳调质高强钢42CrMo可焊性较差和齿轮轴的工作特点,选用力学性能低于母材的J507焊条,焊前整体预热至400℃以减缓焊接接头的冷却速度,施焊过程中控制层间温度保持在(350±20)℃,焊后采用去应力退火处理,保证了42CrMo齿轮轴锻件的堆焊表面无裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号