共查询到20条相似文献,搜索用时 0 毫秒
1.
The present research is intended to address dynamic construction-process simulation methods, with a focus on how to effectively model resource transit among various activity locations in the site system. Following a review of basic simulation paradigms and recent research developments, we propose a new process mapping and simulation methodology for modeling construction operations. The simulation algorithm is presented and the process mapping procedure is illustrated step by step using an earth-moving example featuring technology and resource constraints. It is straightforward to convert the resultant process mapping model describing workflows and resource flows over site locations into a simulation model. A STROBOSCOPE model is formed for the same problem definition to contrast and cross-validate our methodology with the established activity cycle diagram-based modeling approach. One additional case of modeling the concreting site operations by the hoist and barrow method is also given to demonstrate the application of the proposed methodology in practical settings. 相似文献
2.
This research is focused on modeling waste-handling processes in construction, with particular emphasis on how to map out and simulate on-site waste sorting processes. The research proposes an application framework for (1) guiding the development of process mapping models and simulation models; and (2) further assessing the cost effectiveness of on-site waste sorting efforts under practical site constraints (such as labor resource availability, time control on refuse chute usage, and limited working area space in a building site). The connection has been established between the mapping and simulation techniques in the context of modeling waste handling processes in construction sites, such that the process flowchart resulting from the mapping technique can serve as convenient model input to facilitate the creation of a “dynamic” operations simulation model. A case study of the on-site waste sorting method with one refuse chute for waste classification is presented to demonstrate the complete application framework spanning (1) process mapping; (2) mapping-to-simulation model conversion; and (3) method optimization based on valid simulations. 相似文献
3.
The traditional construction education model based on precise well-defined problems and formal definitions is not satisfactorily fulfilling its mission of educating the decision makers of tomorrow. This realization has moved several researchers to explore alternatives where problem solving is carried out in conjunction with the environment, and concepts are embedded in the context promoting learning within the nexus of the activity. Several efforts have been undertaken to develop these environments resulting in a variety of special-purpose situational simulations. However, special-purpose situational simulations exhibit inherent limitations related to their application breadth, flexibility, and promotion of collaborations. These limitations cannot be resolved within the framework of special-purpose learning environments. A general-purpose environment is required to overcome these shortcomings and take full advantage of the situational learning paradigm. This paper describes the conceptual framework and pilot implementation of such an environment called the Virtual Coach. 相似文献
4.
Modeling and analyzing construction operations using simulation techniques allows researchers to capture the uncertainty and randomness usually associated with these operations and can thus be an effective tool for analysis and improvement. However, the effort and knowledge required to build simulation models and experiment with them tend to limit the use of simulation in construction. A common recommendation for removing this obstacle found in the literature leans towards developing simulation tools that reduce model development and experimentation time on the construction engineer’s side by packaging most of the knowledge required into the tool itself. Such “intelligent” simulation modeling tools may significantly impact the way construction engineers use simulation techniques in day-to-day decision?making. This paper presents a framework that extends and formalizes this recommendation by providing the foundation for building intelligence into simulation objects. The proposed framework provides the structure necessary for building intelligence and autonomy into simulation objects and permits a further reduction in the knowledge required to experiment with simulation models. This approach also automates model modification, not only through changes in numeric parameters, but through topological model changes as well, which may assist the model user in making many decisions throughout the different phases of simulation experimentation. 相似文献
5.
Dong-Eun Lee 《Canadian Metallurgical Quarterly》2005,131(3):310-318
This paper introduces a software, Stochastic Project Scheduling Simulation (SPSS), developed to measure the probability to complete a project in a certain time specified by the user. To deliver a project by a completion date committed to in a contract, a number of activities need to be carried out. The time that an entire project takes to complete and the activities that determine total project duration are always questionable because of the randomness and stochastic nature of the activities’ durations. Predicting a project completion probability is valuable, particularly at the time of bidding. The SPSS finds the longest path in a network and runs the network a number of times specified by the user and calculates the stochastic probability to complete the project in the specified time. The SPSS can be used by a contractor: (1) to predict the probability to deliver the project in a given time frame and (2) to assess its capabilities to meet the contractual requirement before bidding. The SPSS can also be used by a construction owner to quantify and analyze the risks involved in the schedule. The benefits of the tool to researchers are: (1) to solve program evaluation and review technique problems; (2) to complement Monte Carlo simulation by applying the concept of project network modeling and scheduling with probabilistic and stochastic activities via a web based Java Simulation which is operateable over the Internet, and (3) to open a way to compare a project network having different distribution functions. 相似文献
6.
Schedules are the means of determining project duration accurately, controlling project progress, and allocating resources efficiently in managing construction projects. It is not sufficient in today’s conditions to evaluate the construction schedules that are affected widely by risks, uncertainties, unexpected situations, deviations, and surprises with well-known deterministic or probabilistic methods such as the critical path method, bar chart (Gantt chart), line of balance, or program evaluation and review technique. In this regard, this paper presents a new simulation-based model—the correlated schedule risk analysis model (CSRAM)—to evaluate construction activity networks under uncertainty when activity durations and risk factors are correlated. An example of a CSRAM application to a single-story house project is presented in the paper. The findings of this application show that CSRAM operates well and produces realistic results in capturing correlation indirectly between activity durations and risk factors regarding the extent of uncertainty inherent in the schedule. 相似文献
7.
Construction of bridges’ decks involves different types of resources that interact in a cyclic manner. Further, the construction operation inherits uncertainties and a variety of demands. Contractors have to select the construction method that suits project constraints including: project conditions, technical, financial, and time constraints. There are several construction methods that can be used to construct bridges’ decks. This paper presents a special-purpose simulation model that aids government agencies and/or their representative in planning the construction of bridges’ decks using cast-in-place and precast balanced cantilever techniques. The pouring of concrete in cast-in-place balanced cantilever techniques can be executed either by using pump station and pump line, or truck mixers, whereas, the precast balanced cantilever technique is carried out using two methods: (1) placement by an independent lifting apparatus; and (2) placement with the help of a beam and winch carried by the bridge deck itself. The developments made to model these methods are detailed in the paper. The proposed special purpose simulation model utilizes STROBOSCOPE as a simulation engine and is coded utilizing Visual Basic 6.0. All actual project data are fed to the developed model in order to carry out the what-if analysis. 相似文献
8.
Most state highways in the United States were built during the 1960s and 1970s with an infrastructure investment of more than $1 trillion. They now exceed their 20?year design lives and are seriously deteriorated. The consequences are high maintenance and road user costs because of degraded road surfaces and construction work zone delays. Efficient planning of highway rehabilitation closures is critical. This paper presents a simulation model, Construction Analysis for Pavement Rehabilitation Strategies (CA4PRS), which estimates the maximum amount of highway rehabilitation/reconstruction during various closure timeframes. The model balances project constraints such as scheduling interfaces, pavement materials and design, contractor logistics and resources, and traffic operations. It has been successfully used on several urban freeway rehabilitation projects with high traffic volume, including projects on I-10 and I-710. The CA4PRS helps agencies and contractors plan highway rehabilitation strategies by taking into account long-life pavement performance, construction productivity, traffic delay, and total cost. 相似文献
9.
Donncha P. Kavanagh 《Canadian Metallurgical Quarterly》1985,111(3):308-323
SIREN (SImulation of REpetitive Networks) is a computer model of repetitive construction such as the construction of multi‐story buildings, housing estates, linear projects, etc. The user interactively inputs a precedence diagram for the repetitive unit (e.g., one floor of a skyscraper) and additional “sub‐networks” that are not part of the repetitive sequence (e.g., first floor of skyscraper). From this information, the computer generates the whole network. Data is input via an IBM‐PC at which point extensive error checking is carried out. The model itself is coded in the GPSS language and runs on a remote mainframe computer. It simulates the various crews as they queue to carry out activities. A working schedule and cumulative cost curve are produced and statistics are gathered on crew and equipment utilization, all being output graphically. A Monte‐Carlo simulation is also included as probability distributions may be associated with the duration of each activity. This yields confidence intervals on cumulative costs throughout the project and on milestone attainment. 相似文献
10.
Contractor’s ability to procure cash to carry out construction operations represents a crucial factor to run profitable business. Bank overdrafts have always been the major source to finance construction projects. However, it is not uncommon that bankers set a limit on the credit allocated to an established overdraft. Bankers’ interest rates and consequently contractors’ financing costs are basically determined based on the allocated credit limits. Furthermore, project indirect costs are directly proportional to the project duration which is affected by the allocated credit limit. Thus, the credit limit affects project financing costs and indirect costs which in turn affect project profit. However, finance-based scheduling produces financially executable schedules at specified credit limits while maintaining the demand of time minimization. Thus, finance-based scheduling provides a tool to control the credit requirements. This control enables contractors to negotiate lower interest rates which reduce financing costs. Thus, finance-based scheduling enables contractors to reduce project indirect costs and financing costs. This paper utilizes genetic algorithm’s technique to devise finance-based schedules that maximize project profit through minimizing financing costs and indirect costs. 相似文献
11.
The interactive, complicated system environment of a construction site renders conventional site layout planning and scheduling techniques to be inadequate in coping with materials handling system design in construction. In this paper, we present a university-industry joint endeavor for improving the effectiveness of the materials handling system on a precast viaduct construction project in Hong Kong by implementing the simplified discrete-event simulation approach (SDESA) along with its computer platform resulting from recent research. How to apply the simulation methodology of SDESA is elaborated step by step. Particular emphasis is placed on procedures of establishing a simulation model, validation of the simulation model, design of simulation experiments, and analysis of simulation results. With process flowchart, site layout plan, and process animation produced in a view-centric simulation environment, it is straightforward to establish, validate, and communicate the operations simulation. The research team convinced the project director, as well as field managers, of the functionality and effectiveness of operations simulation. The knowledge derived from simulation added to experiences of site managers in materials handling system design. With the aid of simulation, even junior engineers would be capable and confident to draw up an actionable construction plan that would lead to enhancement of cost effectiveness and productivity in the field. 相似文献
12.
Dong-Eun Lee Chang-Yong Yi Tae-Kyung Lim David Arditi 《Canadian Metallurgical Quarterly》2010,24(6):557-569
Simulation modeling is important in predicting the productivity of construction operations and the performance of project schedules. It would be desirable if operation and project models are vertically integrated in practice. However, existing discrete event simulation systems do not allow integrating operation and project models. This paper introduces an integrated simulation system named “Construction Operation and Project Scheduling” (COPS). COPS analyzes the productivity of construction operations as well as the performance of a project schedule individually and jointly. It creates operation models, maintains these models in its operation model library, conducts sensitivity analysis with different resource combinations, finds the optimal resource combination that satisfies the user’s requirements relative to hourly production and hourly cost of the operation, feeds this information into a project schedule, and executes stochastic simulation-based scheduling. A case study is presented to demonstrate this integrated simulation system. 相似文献
13.
This paper describes a stochastic simulation-based scheduling system (S3) that: (1) integrates the deterministic critical path method (CPM), the probabilistic program evaluation and review technique (PERT), and the stochastic discrete event simulation (DES) approaches into a single system and lets the scheduler make an informed decision as to which method is better suited to the company’s risk-taking culture; (2) automatically determines the minimum number of simulation runs in DES mode and therefore optimizes the simulation process; and (3) provides a terminal method that tests the statistical significance of the differences between simulations, hence eliminating outliers and therefore increasing the accuracy of the DES process. The system is based on an earlier version of the system called stochastic project scheduling simulation and makes use of all the capabilities of this system. The study is of value to practitioners because S3 produces a realistic prediction of the probability of completing a project in a specified time. The study is also of relevance to researchers in that it allows researchers to compare the outcome of CPM, PERT, and DES under different conditions such as different variability or skewness in the activity duration data, the configuration of the network, or the distribution of the activity durations. 相似文献
14.
The application of network techniques of project scheduling to repetitive projects has been criticized for the inability of network techniques to help maintain work continuity. Moreover, current network techniques require a large number of activities to represent a repetitive project and presume that there is only one logical sequence. This makes schedules time consuming to develop as well as maintain. Further, the logic chosen by the planner might be far from the shortest possible duration. This paper, utilizing the soft logic sequencing principles developed by Fan et al., develops a system which provides an easy input module in addition to scheduling and work-continuity-maintenance modules. The system eases the network generation and update processes, which in turn provides the shortest possible duration logics and the start and finish dates required to maintain work continuity. 相似文献
15.
This research proposes a hybrid simulation approach based upon the principles of system dynamics (SD) and discrete event simulation (DES), which facilitates a better understanding of complex interactions among various processes in large-scale construction. The significance of the construction context that interacts with construction operations is highlighted, and a hybrid SD-DES approach is proposed as a means to capture the feedback between the two. In particular, this paper focuses on how to seamlessly integrate SD and DES within the framework of a modeling perspective. For the purpose of substantiating the discussion, a pipeline installation process is modeled using the proposed hybrid approach, with specific consideration given to how the approach can serve to address complex interactions between operation and context. 相似文献
16.
Mohamed Marzouk Moatassem Abdallah Moheeb El-Said 《Canadian Metallurgical Quarterly》2010,136(6):670-682
Tunnels projects are constructed to facilitate the execution of underground works with minor disturbance on surface structures and traffic. This is deemed important especially in downtown cities where disturbances should be minimized to assure flowability on surface and underground infrastructures. Microtunneling involves the use of a remotely controlled, guided pipe-jacking process in order to support excavation face. Microtunneling aids in avoiding the need of open trench for pipe laying, which causes extreme disruption to the surrounding. This paper presents a tool for planning microtunnels projects using computer simulation. The proposed tool aids contractors in planning microtunneling by estimating their associated time and cost of construction. There are six models that are coded in the proposed tool in order to capture the construction of microtunnels and shafts. The tool breaks down microtunnels projects into microtunnels segments and shafts which constitute several construction zones. An application example is presented to demonstrate the features of the proposed tool. 相似文献
17.
Ming Lu 《Canadian Metallurgical Quarterly》2003,129(5):537-546
The methodology of discrete-event simulation provides a promising alternative solution to designing and analyzing dynamic, complicated, and interactive construction systems. In this paper, an attempt is made to extend the previous work of simplifying construction simulation by delving into the fundamental approaches for discrete-event simulation. A new simplified discrete-event simulation approach (SDESA) is presented through extracting the constructive features from the existing event/activity-based simulation methods; both the algorithm and the model structure of simulation are streamlined such that simulating construction systems is made as easy as applying the critical path method (CPM). Two applications based on real road construction projects in Hong Kong serve as case studies to illustrate the methodology of simulation modeling with SDESA and reveal the simplicity and effectiveness of SDESA in modeling complex construction systems and achieving the preset objectives of such modeling. They are a granular base-course construction system featuring both cyclic and linear processes and an asphalt paving construction system with complicated technological/logical constraints. As a general-purpose method for construction planning, SDESA enables practitioners to deal with what the CPM-based network analysis method fails to solve by offering discrete-event simulation capabilities. Furthermore, the SDESA can potentially be adapted to special-purpose simulation tools to tackle large and complicated construction systems of practical size that have yet to find convenient solutions with existing simulation methods. 相似文献
18.
Makarand Hastak Sanjiv Gokhale Kartik Goyani Taehoon Hong Bhavin Safi 《Canadian Metallurgical Quarterly》2008,134(12):915-927
Today’s construction business relies on first-to-market product strategies to gain competitive advantages and increase profit margins. This has created an increased demand for a high performance capital project delivery system that can achieve a dramatic reduction in project cycle time. Very few decision tools and guidelines exist to assist owners in choosing appropriate delivery systems and project strategies to radically reduce the project cycle time from the preplanning stage through start up. The research presented in this paper surveyed the construction owners and architectural/engineering/construction firms to identify projects that have achieved greater than 25% reduction in overall project cycle time when compared to current industry standards. The data collected were analyzed to determine the techniques that facilitate radical reduction in project cycle time. These techniques include, best practices and schedule reduction techniques as well as the various management techniques employed on the projects identified by the Construction Industry Institute (CII). This research also identified the barriers to radical schedule reduction. The research concludes that radical schedule reduction well in excess of 25% can be achieved through the selective employment of management techniques, schedule reduction techniques and CII best practices. Almost every construction manager can utilize this research to improve project performance whether for radical reduction or simply more effective execution. 相似文献
19.
This paper discusses a new approach that will facilitate the use of simulation in the construction industry. Previous attempts in this regard have been hampered by the gap between the user and the simulation software, the power and flexibility of available tools, and the readiness of industry. A comprehensive new approach (referred to as the Unified Modeling Methodology), which addresses the complete needs of the construction simulationist, is detailed. It is based on several state-of-the-art concepts in addition to newly developed ones. This methodology also describes how all of these concepts can be combined together using object oriented principles. The methodology was used in the development of a complete simulation tool development and utilization environment called Simphony. Several case studies were performed to illustrate the advantages of the new approach. 相似文献
20.
Subcontractor selection strategies used by contractors can significantly affect short-term project and long-term organizational success. Existing research on subcontractor selection strategy implicitly assumes that the evaluation of subcontractors depends on current conditions. We extend this perspective by integrating an agent-based simulation model with game theory to examine whether precontract partner selection strategies that do not consider subcontractor selection as a repeated game may lead to a version of the holdup problem. The holdup problem we investigate focuses on relationship-specific investments in learning after the introduction of an innovation or organizational change across a project network. A minimum total cost strategy may decelerate the rate of adaptation to an innovation or organizational change, thereby proving that the holdup problem can exist in project networks. The findings contribute to subcontractor selection strategy literature by simulating the impact of the holdup problem in project networks, distinguishing task interdependence as a moderating variable, and identifying that the minimum total cost strategy can be a suboptimal strategy for project networks adapting to systemic changes. 相似文献