首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow BaTiO3 and anatase spheres were prepared from multilayered colloidal titanate particles. An inorganic precursor, titanium (IV) bis(ammonium lactate) dihydroxide (TALH) (chemical formula: [CH3CH(O–)CO2–NH4]2Ti(OH)2) was used. First, a layer-by-layer (LBL) colloid-templating method was employed using TALH to generate monodispersed hollow titanate spheres. These spheres were then treated in a Ba(OH)2 solution or distilled water under hydrothermal conditions to transform them into hollow BaTiO3 or anatase spheres, respectively.  相似文献   

2.
A uniform BaTiO3 nano layer was coated on spherical Ni particles for multilayer ceramic capacitor applications via a Ti-hydroxide coating using the controlled hydrolysis of a TiCl4 butanol solution containing (C2H5)2NH (diethylamine, DEA) and its subsequent hydrothermal reaction at various [Ba(OH)2], residual [DEA], and hydrothermal temperatures. The hydrothermal conversion was successful at [Ba(OH)2]≥0.065 M (Ba/Ti≥1.3) and T ≥150°C, and the residual DEA in the Ti-hydroxide coating layer not only affected the formation of the BaTiO3 phase but also resulted in a rough surface morphology. When a minimal amount of DEA was involved in the formation of Ti-hydroxide, a uniform BaTiO3 coating with a clean surface morphology could be attained, which was confirmed by elemental mapping of the coated powder and the observation of hollow spheres after removing the Ni core. The BaTiO3 coating was very effective not only in preventing Ni oxidation but also in shifting the starting point of Ni densification to a higher temperature.  相似文献   

3.
BaTiO3 thin films were processed hydrothermally on Ag-coated quartz substrates at 90°C by reacting films of titanium dimethoxy dineodecanoate (TDD) in aqueous solutions of Ba(OH)2. Two reaction sequences were used: either the TDD was reacted directly in aqueous Ba(OH)2, or the TDD was first pyrolyzed in air at temperatures ranging from 200° to 500°C before hydrothermal reaction. Depending on the processing conditions, the dielectric constant of the thin films ranged from 5 to 170, the dielectric constant increasing with increasing pyrolysis temperature. Thin film porosimetry data suggest that the improvement in film dielectric performance is related to decreases in thin film residual porosity after hydrothermal reaction.  相似文献   

4.
A New Glycothermal Process for Barium Titanate Nanoparticle Synthesis   总被引:1,自引:0,他引:1  
Barium titanate (BaTiO3) nanoparticles were synthesized at the low temperature of 80°C through a glycothermal reaction using Ba(OH)2·8H2O and amorphous titanium hydrous gel as precursors and a solution of 1,4-butanediol and water as solvent. This processing method provides a simple low-temperature route for producing BaTiO3 nanoparticles, which could also be extended to other systems. It is demonstrated that the size of BaTiO3 particles can be controlled by reaction conditions, such as reaction temperature and various volume ratios of 1,4-butanediol/water.  相似文献   

5.
Diatom frustules were used as bio-templates to synthesize functional ceramics via solid–gas displacement reactions. Silica-based frustules were exposed to TiF4 at 330°C to form TiOF2, which was later converted to TiO2 (anatase) by heat treatment in air at 600°C. The TiO2 frustules were then exposed to molten Ba(OH)2 or Sr(OH)2 to form BaTiO3 or SrTiO3, respectively. In both cases, near-complete conversion was achieved while retaining the morphology of the original silica frustules. BaTiO3 and SrTiO3 frustules exhibit nearly phase pure, nanocrystalline perovskite structure.  相似文献   

6.
Kinetics of Barium Titanate Synthesis   总被引:7,自引:0,他引:7  
Reaction curves were obtained at various temperatures and concentrations for the formation of BaTiO3 from particulate titania in Ba(OH)2 solution. Kinetic analyses were performed by constructing mathematical models which took into account the particle size distribution of the reactant titania for both the topochemically-rate-controlled and the diffusion-rate-controlled reactions. At [Ba(OH)2] > ca. 0.1 M the rate-controlling step is the Ba reaction with TiO2 at the interface. The measured activation energy is 105.5 kJ/mol. The rates are independent of Ba(OH)2 concentration, indicating that the TiO2 interface is saturated. At [Ba(OH)2] < ca. 0.1 M the rate-determining step shifts to diffusion through the product BaTiO3 layer, the rates are concentration dependent, and the BaTiO3 particle sizes are inversely proportional to the Ba(OH)2 concentrations used.  相似文献   

7.
Fe3O4–BaTiO3 composite particles were successfully prepared by ultrasonic spray pyrolysis. A mixture of iron(III) nitrate, barium acetate and titanium tetrachloride aqueous solution were atomized into the mist, and the mist was dried and pyrolyzed in N2 (90%) and H2 (10%) atmosphere. Fe3O4–BaTiO3 composite particle was obtained between 900° and 950°C while the coexistence of FeO was detected at 1000°C. Transmission electron microscope observation revealed that the composite particle is consisted of nanocrystalline having primary particle size of 35 nm. Lattice parameter of the Fe3O4–BaTiO3 nanocomposite particle was 0.8404 nm that is larger than that of pure Fe3O4. Coercivity of the nanocomposite particle (390 Oe) was much larger than that of pure Fe3O4 (140 Oe). These results suggest that slight diffusion of Ba into Fe3O4 occurred.  相似文献   

8.
A microwave–hydrothermal (MH) process was performed at 240°C to prepare tetragonal BaTiO3 from TiCl4 and Ba(OH)2. No alkali hydroxide was used to avoid contaminations. MH BaTiO3 powder with a c / a ratio of 1.010 and a mean size of 180 nm was synthesized within only 9 h. The MH BaTiO3 contains a very low concentration of lattice hydroxyl group, associated with a very small lattice strain. The measured density of the MH BaTiO3 is favorably consistent with the theoretical value, and the Ba/Ti stoichiometry determined is 0.996. The formation of a tetragonal structure in BaTiO3 and the particle growth were strongly promoted by the MH process. The effects of lattice defects on the stoichiometry and the determination of transition enthalpy were discussed.  相似文献   

9.
Nanometer-sized BaTiO3 powders have been synthesized hydrothermally from Ba(OH)2 and titanium alkoxide at 150°C for 2 h, and the Ba/Ti ratio has been measured with an accuracy of ±0.003. Stoichiometric powders can be obtained by adjusting the Ba/Ti ratio of the reactants to a value of 1.018. At a lower Ba/Ti ratio, the solubility of Ba(OH)2 prevents full incorporation of barium, and barium-deficient powders result. A higher Ba/Ti ratio leads to the incorporation of excess barium in the powder. K s(BaTiO3,-25°C) = 7 × 10-8 has been calculated for the equilibrium reaction. From this result, two reproducible processes for the synthesis of stoichiometric BaTiO3 are proposed. The processes rely only on very accurate control of the chemical composition (Ba/Ti ratio) of the precursor suspension. The sintering behavior of powders having Ba/Ti ratio values between 0.965 and 1.011 is described from results of dilatometric measurements and isothermal sintering. Room-temperature dielectric constants as high as 5600 and losses as low as 0.009 have been obtained for a stoichiometry slightly less than 1.000. It is expected that optimum sintering behavior and electrical properties are obtained in the stoichiometry range 0.995-1.000.  相似文献   

10.
Thin films of cubic BaTiO3 were processed hydrothermally at 40°–80°C by reacting thin layers of titanium organo metallic liquid precursors in aqueous solutions of either Ba(OH)2 or a mixture of NaOH and BaCl2. All films (thickness ∼1 μm) were polycrystalline with grain sizes ranging from nano- to micrometer dimensions. BaTiO3 formation was facilitated by increasing [OH-], [Ba2+], and the temperature. The film structure was related to the nucleation and growth behavior of the BaTiO3 particles. Films processed at relatively low [OH-], [Ba2+], and temperatures were coarse grain and opaque, but increasing [OH-], [Ba2+], and temperature caused the grain size to decrease, resulting in transparent films.  相似文献   

11.
The solid solubility of R ions (R = Ho3+, Dy3+, and Y3+) in the BaTiO3 perovskite structure was studied by quantitative electron-probe microanalysis (EPMA) using wavelength-dispersive spectroscopy (WDS), scanning electron microscopy (SEM), and X-ray diffractometry (XRD). Highly doped BaTiO3 samples were prepared using mixed-oxide technology including equilibration at 1400° and 1500°C in ambient air. The solubility was found to depend mainly on the starting composition. In the TiO2-rich samples a relatively low concentration of R incorporated preferentially at the Ba2+ lattice sites (solubility limit ∼Ba0.986R0.014Ti0.9965(V"Ti")0.0035O3at 1400°C). In BaO-rich samples a high concentration of R entered the BaTiO3 structure at the Ti4+ lattice sites (solubility limit ∼BaTi0.85R0.15O2.925(VO••)0.075at 1500°C). Ho3+, Dy3+, and Y3+incorporated preferentially at the Ti4+ lattice sites stabilize the hexagonal polymorph of BaTiO3. The phase equilibria of the Ho3+–BaTiO3 solid solutions were presented in a BaO–Ho2O3–TiO2phase diagram.  相似文献   

12.
Micron-scale platelet barium titanate was synthesized using a twostep molten salt and topochemical technique. Plate-like BaBi4Ti4O15 was first synthesized as a precursor by molten salt synthesis. Then, Bi3+ in the precursor was replaced by Ba2+ and formed perovskite-structure BaTiO3 through a topochemical reaction. The BaTiO3 single crystals have an average size of 5–10 μm and a thickness of 0.5 μm. The purpose of this article is to control the particle shape with desired structure. High aspect ratio BaTiO3 platelets are suitable templates to obtain textured ceramics (especially Pb(Mg1/3Nb2/3)O3–32.5PbTiO3) by the templated grain growth process.  相似文献   

13.
Barium titanate has been prepared by solid-state reaction of nanocrystalline TiO2 (70 nm) with BaCO3 of different particle size (650, 140, and 50 nm). The results give evidence of a strong effect of the size of BaCO3 in the solid-state synthesis of barium titanate. The use of nanocrystalline BaCO3 already leads to formation of the single-phase BaTiO3 after calcination for 8 h at 800°C. The final powder consists of primary particles of ≈100 nm, has a narrow particle size distribution with d 50=270 nm, and no agglomerates larger than 800 nm. For the coarser carbonate, 4 h calcination at 1000°C are required and the final powder is much coarser. Solid-state reaction of nanocrystalline BaCO3 and TiO2 represents an alternative to chemical preparation routes for the production of barium titanate ultrafine powders.  相似文献   

14.
Tetragonal BaTiO3 thin films were prepared directly on Ti metal substrates in Ba(OH)2 solutions by a hydrothermal method at temperatures 400° to 800°C for 5 to 240 min. The film thickness estimated from weight gain of Ti plate was in the range from 0.5 to 2.5 μm, and it increased with increasing treatment temperature, treatment time, and Ba(OH)2 concentration. Rectangular crystals having {100} and {001} faces grew idiomorphically with approximate crystal size of 0.3 to 2.0 μm. The tetragonality of the BaTiO3 films became apparent when the average crystal size exceeded about 1 μm. Lattice parameters of the films were a = 3.994 Å, c = 4.035 Å, and c/a = 1.010. The films formed above 600°C had preferred orientation showing stronger XRD peaks of h 00 and 00 l than the other peaks.  相似文献   

15.
The control of the microstructure of BaTiO3 films grown on titanium by the hydrothermal–electrochemical method was investigated. Experiments were conducted in a three-electrode high-pressure electrochemical cell in a 0.1 M Ba(OH)2 electrolyte at 150°C. Results showed that the spontaneous initial nucleation linked to pure hydrothermal BaTiO3 formation can be inhibited by cathodically protecting the titanium electrode from the moment it is immersed in the electrolyte. The application of initial nucleation pulses of varying cathodic potentials affected the grain size of the deposit. It is suggested that the formation of a titanium oxide layer is a necessary step previous to the nucleation of BaTiO3.  相似文献   

16.
The sintering temperature of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 (NKN–BT) ceramics needs to be decreased below 1000°C to prevent Na2O evaporation, which can cause difficulties in poling and may eventually degrade their piezoelectric properties. NKN–BT ceramics containing CuO were well sintered at 950°C with grain growth. Poling was easy for all specimens. Densification and grain growth were explained by the formation of a liquid phase. The addition of CuO improved the piezoelectric properties by increasing the grain size and density. High piezoelectric properties of d 33=230 pC/N, k p=37%, and ɛ3T0=1150 were obtained from the specimen containing 1.0 mol% of CuO synthesized by the conventional solid-state method.  相似文献   

17.
The precursor [NH4]2[Ti(catecholate)3] · 2H2O is known to react with Ba(OH)2· 8H2O in an acid/base process that generates Ba[Ti(catecholate)3] · 3H2O, a compound which undergoes low-temperatue calcination to produce BaTiO3 powder. Attempts to develop similar routes to PbTiO3 have been frustrated, since lead(II) hydroxide does not exist. The amphoteric yellow PbO and the basic oxide, Pb6O(OH)64+, are both insufficiently basic to react with [NH4]2[Ti(catecholate)3] · 2H2O. Based on the large sizes of both the [Ti(catecholate)3]2- anion and the Pb2+ cation, a precipitation method has been developed in which lead nitrate and [NH4]2[Ti(catecholate)3] · 2H2O are added together in an aqueous medium causing precipitation and leaving only NH4NO3 in solution. The lead-titanium-catecholate complex that forms in this manner undergoes low-temperature pyrolysis to produce PbTiO3. SEM indicates a submicrometer ultimate crystallite size.  相似文献   

18.
Rutile or anatase may be depolymerized and complexed by sequential treatment with (i) H2SO4/(NH4)2SO4, (ii) H2O, and (iii) catechol/NH4OH to produce the intermediate (NH4)2(Ti(catecholate)3) · 2H2O. Treatment with Ba(OH)2· 8H2O leads to an acid-base reaction generating Ba(Ti(catecholate)3) · 3H2O, in which the Ba:Ti ratio is held at 1:1 at the molecular level. Calcination produces BaTiO3 powder.  相似文献   

19.
Dense bodies were prepared of compositions in the quaternary system BaTiO3–BaSnO3–SrSnO3–CaSnO3 containing from 3 to 60 mole % stannate. The general effect of the stannate addition to barium titanate was to decrease the Curie temperature and broaden the peak. On a molar basis the three stannates were approximately equivalent in their effect on the dielectric properties of barium titanate, although the rate of shift of the Curie temperature was slightly greater when SrSnO3 was used. Bodies containing calcium or strontium stannate had lower power factors than those containing barium stannate. Bodies compounded with calcium stannate matured most readily and at lower temperatures. Bodies having dielectric constants ( K ) of 2300 to 2800 at 1 kc. with low positive temperature coefficients up to about 55°C. were obtained with a 3 mole % addition of stannate. Bodies with minimum K 's of 3000 to 4000 at 1 kc. over the range 25° to 85°C. were obtained from BaTiO3 with an addition of about 6 mole % BaSnO3, SrSnO3, or CaSnO3. Bodies with negative temperature coefficients of K ranging from about 13,000 to about 1000 p.p.m. per °C. were obtained with stannate additions of from 10 to 60 mole %.  相似文献   

20.
A high, temperature-stable dielectric constant (∼1000 from 0° to 300°C) coupled with a high electrical resistivity (∼1012Ω·cm at 250°C) make 0.7 BaTiO3–0.3 BiScO3 ceramics an attractive candidate for high-energy density capacitors operating at elevated temperatures. Single dielectric layer capacitors were prepared to confirm the feasibility of BaTiO3–BiScO3 for this application. It was found that an energy density of about 6.1 J/cm3 at a field of 73 kV/mm could be achieved at room temperature, which is superior to typical commercial X7R capacitors. Moreover, the high-energy density values were retained to 300°C. This suggests that BaTiO3–BiScO3 ceramics have some advantages compared with conventional capacitor materials for high-temperature energy storage, and with further improvements in microstructure and composition, could provide realistic solutions for power electronic capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号