首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of lysophosphatidylcholine (LPC) in non-ischemic and ischemic canine heart was investigated byin vitro enzyme analysis. Selected subcellular fractions were assayed for the LPC-producing enzyme phospholipase A and the LPC-eliminating enzymes LPC:acyl-CoA acyltransferase, LPC:LPC transacylase and lysophospholipase. The canine heart was found to contain all enzymes differing, however, in subcellular distribution and specific activity. Phospholipase A activity did not change significantly in any of the fractions prepared from the ischemic tissue of hearts rendered ischemic for 1, 3 or 5 hr when compared to non-ischemic tissue. Changes in the activity of the microsomal LPC:acyl-CoA acyltransferase over the course of 5 hr of ischemia were observed. Significant decreases in the activity of the cytosolic and microsomal lysophospholipases were detected especially after 3 and 5 hr of ischemia. Similarly, a decrease in the activity of the microsomal LPC:LPC transacylase was noted after 3 and 5 hr of ischemia. Our results suggest that impaired catabolism of LPC rather than an enhanced production of LPC is the principal mechanism for the increase in LPC levels in the ischemic canine heart.  相似文献   

2.
Myocardial ischemia was produced in the left ventricle of the canine heart by a Harris two-stage occlusion of the left anterior descending coronary artery. The lipid content in the ischemic myocardium was analyzed and compared with the control tissue. No significant change in total phospholipid and cholesterol was detected. A 2-fold elevation in the levels of the major lysophospholipids was observed during acute ventricular arrhythmias at 24hr after the onset of ischemia. Such increases were not caused by preferential hydrolysis of phospholipid plasmalogens from the parent phospholipids.  相似文献   

3.
The ability of exogenous lysophosphatidylcholine to produce electrophysiological derangements and cardiac arrhythmias in the heart has been documented. The action of lysophosphatidylcholine is thought to be mediated via its association with the membrane. The present study examined the nature of the association of lysophosphatidylcholine with isolated rat myocyte membrane. The association was studied by incubating myocytes in a lysophosphatidylcholine-containing medium. The association of lysophosphatidylcholine with the myocyte sarcolemma was not affected by palmitic acid and glycerophosphocholine but was reduced by platelet-activating factor (PAF). The addition of albumin (5 mg/mL) at the end of the incubation period effectively removed the lysophosphatidylcholine from the myocytes. Our results suggest that most of the lysophosphatidylcholine in isolated myocytes was associated preferentially with the outer leaflet of the myocyte sarcolemma. This type of association might be responsible for the lysophosphatidylcholine-induced electrophysiological alterations in the heart.  相似文献   

4.
Phosphatidylcholine acyltransferase (lecithin:cholesterol acyltransferase or LCAT; EC 2.3.1.43) activity was found to be present in pig ovarian follicular fluid (POFF), in addition to pig serum (PS). The cholesterol esterification rate in both POFF and PS is linear with incubation time up to 2 hr. The mean absolute rate of POFF-cholesterol esterification was 8.1±0.4 nmoles per ml per hr approximately one-fourth of that in PS. However, the fractional rate (percent of labeled cholesterol esterified per hr) of POFF-cholesterol esterification was similar to that observed in PS. There was little variation of absolute rate of cholesterol esterification in the fluid obtained from different sizes of follicles. Fatty acid or triacylglycerol did not participate in the reaction of cholesterol esterification in POFF. No appreciable change in enzymatic activity was found from storing POFF at 4 C for periods of time up to 24 hr or at −70 C up to 2 months, but activity was lost thereafter. On the other hand, PS showed a much longer period of stability (5 days at 4 C and 9 months at −70 C). A discrepancy between the fatty acid composition of cholesteryl esters formed by the LCAT reaction and the fatty acid composition at the C-2 position of phosphatidylcholine led us to propose a two-step mechanism for the LCAT reaction. It is concluded that the LCAT of POFF, as well as that of plasma, is specific for individual fatty acids rather than for the fatty acid composition of phosphatidylcholine. The fatty acid concentration of lysophosphatidylcholine decreased during prolonged incubation times (6 to 21 hr) suggesting that the increased lysophosphatidylcholine formed as a product of the LCAT reaction may be reused as substrate for the LCAT reaction or for hydrolysis by lysophosphatidylcholine hydrolase. Presented at the AOCS Meeting, New York, May 1977.  相似文献   

5.
Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia.  相似文献   

6.
Angiogenesis factors are produced in response to hypoxic or ischemic insult at the site of pathology, which will cause neovascularization. Insulin like growth factor-1 (IGF-1) exerts potent proliferative, angiogenic and anti-apoptotic effects in target tissues. The present study was aimed to evaluate the effects of IGF-1 on circulating level of angiogenic cytokine interleukin-8 (IL-8), in experimentally-induced myocardial ischemia in rats. Male Sprague-Dawley rats were divided into control, IGF-1 treated (2 μg/kg/day subcutaneously, for 5 and 10 days), isoproterenol (ISO) treated (85 mg/kg, subcutaneously for two days) and ISO with IGF-1 treated (for 5 and 10 days). Heart weight, serum IGF-1, IL-8 and cardiac marker enzymes (CK-MB and LDH) were recorded after 5 and 10 days of treatment. Histopathological analyses of the myocardium were also done. There was a significant increase in serum cardiac markers with ISO treatment indicating myocardial infarction in rats. IGF-1 level increased significantly in ISO treated groups and the level of IGF-1 was significantly higher after 10 days of treatment. IL-8 level increased significantly after ISO treatment after 5 and 10 days and IGF-1 concurrent treatment to ISO rats had significantly increased IL-8 levels. Histopathologically, myocyte necrosis and nuclear pyknosis were reduced significantly in IGF-1 treated group and there were numerous areas of capillary sprouting suggestive of neovascularization in the myocardium. Thus, IGF-1 protects the ischemic myocardium with increased production of circulating angiogenic cytokine, IL-8 and increased angiogenesis.  相似文献   

7.
The relationship between heart failure (HF), sleep-disordered breathing and cardiac arrhythmias is complex and poorly understood. Whereas the frequency of predominantly obstructive sleep apnea in HF patients is low and similar or moderately higher to that observed in the general population, central sleep apnea (CSA) has been observed in approximately 50% of HF patients, depending on the methods used to detect CSA and patient selection. Despite this high prevalence, it is still unclear whether CSA is merely a marker or an independent risk factor for an adverse prognosis in HF patients and whether CSA is associated with an increased risk for supraventricular as well as ventricular arrhythmias in HF patients. The current review focuses on the relationship between CSA and atrial fibrillation as the most common atrial arrhythmia in HF patients, and on the relationship between CSA and ventricular tachycardia and ventricular fibrillation as the most frequent cause of sudden cardiac death in HF patients.  相似文献   

8.
Phosphatidylcholine containing a long chain polyunsaturated acyl group at the 2-position has been prepared by phospholipase A 2 catalyzed esterification of lysophosphatidylcholine with polyunsaturated fatty acids EPA (C20∶5) or DHA (C22∶6). Preliminary studies showed that the other fatty acids, such as lauric acid (C12), palmitic acid (C16), stearic acid (C18) and linoleic acid (C18∶2), were also incorporated. To our knowledge, phospholipase A 2 catalyzed condensation reactions have not been reported in the literature before. The reactions were performed in sodiumbis(2-ethylhexyl)-sulfosuccinate-based microemulsions containing small amounts of water. Synthesis of the same phospholipid by transesterification of phosphatidylcholine with the polyunsaturated acids in microemulsion failed; however, enzymatic hydrolysis to lysophosphatidylcholine was facile, quantitative conversion from phosphatidylcholine being attained after 16 hr reaction time. An additional observation was that, unlike enzymatic hydrolysis of phospholipids, the condensation reaction catalyzed by phospholipase A 2 was totally independent of the presence of calcium.  相似文献   

9.
Pigment epithelium-derived factor (PEDF) is a pleiotropic gene with anti-inflammatory, antioxidant and anti-angiogenic properties. However, recent reports about the effects of PEDF on cardiomyocytes are controversial, and it is not known whether and how PEDF acts to inhibit hypoxic or ischemic endothelial injury in the heart. In the present study, adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-small interfering RNA (siRNA)-lentivirus (PEDF-RNAi-LV) or PEDF-LV was delivered into the myocardium along the infarct border to knockdown or overexpress PEDF, respectively. Vascular permeability, cardiomyocyte apoptosis, myocardial infarct size and animal cardiac function were analyzed. We also evaluated PEDF’s effect on the suppression of the endothelial permeability and cardiomyocyte apoptosis under hypoxia in vitro. The results indicated that PEDF significantly suppressed the vascular permeability and inhibited hypoxia-induced endothelial permeability through PPARγ-dependent tight junction (TJ) production. PEDF protected cardiomyocytes against ischemia or hypoxia-induced cell apoptosis both in vivo and in vitro via preventing the activation of caspase-3. We also found that PEDF significantly reduced myocardial infarct size and enhanced cardiac function in rats with AMI. These data suggest that PEDF could protect cardiac function from ischemic injury, at least by means of reducing vascular permeability, cardiomyocyte apoptosis and myocardial infarct size.  相似文献   

10.
It is now well established that ischemia/reperfusion (I/R) injury is associated with the compromised recovery of cardiac contractile function. Such an adverse effect of I/R injury in the heart is attributed to the development of oxidative stress and intracellular Ca2+-overload, which are known to induce remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils. However, repeated episodes of brief periods of ischemia followed by reperfusion or ischemic preconditioning (IP) have been shown to improve cardiac function and exert cardioprotective actions against the adverse effects of prolonged I/R injury. This protective action of IP in attenuating myocardial damage and subcellular remodeling is likely to be due to marked reductions in the occurrence of oxidative stress and intracellular Ca2+-overload in cardiomyocytes. In addition, the beneficial actions of IP have been attributed to the depression of proteolytic activities and inflammatory levels of cytokines as well as the activation of the nuclear factor erythroid factor 2-mediated signal transduction pathway. Accordingly, this review is intended to describe some of the changes in subcellular organelles, which are induced in cardiomyocytes by I/R for the occurrence of oxidative stress and intracellular Ca2+-overload and highlight some of the mechanisms for explaining the cardioprotective effects of IP.  相似文献   

11.
Kinase inhibitors (KIs) represent a growing class of drugs directed at various protein kinases and used in the treatment of both solid tumors and hematologic malignancies. It is a heterogeneous group of compounds that are widely applied not only in different types of tumors but also in tumors that are positive for a specific predictive factor. This review summarizes common cardiotoxic effects of KIs, including hypertension, arrhythmias with bradycardia and QTc prolongation, and cardiomyopathy that can lead to heart failure, as well as less common effects such as fluid retention, ischemic heart disease, and elevated risk of thromboembolic events. The guidelines for cardiac monitoring and management of the most common cardiotoxic effects of protein KIs are discussed. Potential signaling pathways affected by KIs and likely contributing to cardiac damage are also described. Finally, the need for further research into the molecular mechanisms underlying the cardiovascular toxicity of these drugs is indicated.  相似文献   

12.
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.  相似文献   

13.
Patients with diabetes mellitus tend to develop ischemia-related complications and have compromised endothelial progenitor cell (EPC) function. Melatonin protects against ischemic injury, possibly via EPC modulation. We investigated whether melatonin pretreatment could restore EPC function impairment and improve circulation recovery in a diabetic critical limb ischemia mouse model. Under 25 mM high-glucose medium in vitro, EPC proliferation, nitric oxide production, tube formation, and endothelial nitric oxide synthase (eNOS) phosphorylation were significantly suppressed. Hyperglycemia promoted EPC senescence and apoptosis as well as increased reactive oxygen species (ROS) production. Melatonin treatment reversed the harmful effects of hyperglycemia on EPC through adenosine monophosphate–activated protein kinase-related mechanisms to increase eNOS phosphorylation and heme oxygenase-1 expression. In an in-vivo study, after a 4-week surgical induction of hindlimb ischemia, mice with streptozotocin (STZ)-induced diabetes showed significant reductions in new vessel formation, tissue reperfusion, and EPC mobilization in ischemic hindlimbs compared to non-diabetic mice. Mice with STZ-induced diabetes that received melatonin treatment (10 mg/kg/day, intraperitoneal) had significantly improved blood perfusion ratios of ischemic to non-ischemic limb, EPC mobilization, and densities of capillaries. In addition, a murine bone marrow transplantation model to support these findings demonstrated that melatonin stimulated bone marrow-originated EPCs to differentiate into vascular endothelial cells in femoral ligation-induced ischemic muscles. In summary, this study suggests that melatonin treatment augments EPC function along with neovascularization in response to ischemia in diabetic mice. We illustrated the protective effects of melatonin on EPC H2O2 production, senescence, and migration through melatonin receptors and modulating eNOS, AMPK, and HO-1 activities at the cellular level. Thus, melatonin might be used to treat the impairment of EPC mobilization and circulation recuperation in response to ischemic injury caused by chronic hyperglycemia. Additional studies are needed to elucidate the applicability of the results in humans.  相似文献   

14.
Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain–heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.  相似文献   

15.
Reactive oxygen species (ROS) production is an important mechanism in myocardial ischemia and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of major sources of ROS in the heart. Previous studies showed that vagus nerve stimulation (VNS) is beneficial in treating ischemic heart diseases. However, the effect of VNS on ROS production remains elusive. In this study, we investigated the role of VNS onischemia-induced ROS production. Our results demonstrated that VNS alleviated the myocardial injury, attenuated the cardiac dysfunction, reserved the antioxidant enzyme activity and inhibited the formation of ROS as evidenced by the decreased NADPH oxidase (Nox) activity and superoxide fluorescence intensity as well as the expression of p67phox, Rac1 and nitrotyrosine. Furthermore, VNS resulted in the phosphorylation and activation of adenosine monophosphate activated protein kinase (AMPK), which in turn led to an inactivation of Nox by protein kinase C (PKC); however, the phenomena were repressed by the administration of a muscarinic antagonist atropine. Taken together, these data indicate that VNS decreases ROS via AMPK-PKC-Nox pathway; this may have potential importance for the treatment of ischemic heart diseases.  相似文献   

16.
Transient forebrain or global ischemia induces cell death in vulnerable CA1 pyramidal neurons. A brief period of ischemia, i.e., ischemic preconditioning, affords CA1 neurons robust protection against a subsequent, more prolonged ischemic challenge. Using the four-vessel occlusion model, we established an ischemic preconditioning model in which rodents were subjected to 3 min of sublethal ischemia 48 h before a 15 min lethal ischemia. We showed that preconditioning attenuated the ischemia-induced neural cell death and DNA fragmentation in the hippocampal CA1 region. RT-PCR and western blot analysis showed that preconditioning prior to an ischemic insult significantly increased ASIC 2a mRNA and protein expression in comparison to the ischemic insult alone (p < 0.01). These findings implicate a new role of ASIC 2a on endogenous neuroprotection from ischemic insult.  相似文献   

17.
The surfactant protein-G (SP-G) has recently been discovered in the brain and linked to fluid balance regulations. Stroke is characterized by impaired vessel integrity, promoting water influx and edema formation. The neurovascular unit concept (NVU) has been generated to cover not only ischemic affections of neurons or vessels but also other regionally associated cells. This study provides the first spatio-temporal characterization of SP-G and NVU elements after experimental stroke. Immunofluorescence labeling was applied to explore SP-G, vascular and cellular markers in mice (4, 24, and 72 h of ischemia), rats (24 h of ischemia), and sheep (two weeks of ischemia). Extravasated albumin indicated vascular damage within ischemic areas. Quantifications revealed decreasing SP-G signals in the ischemia-affected neocortex and subcortex. Inverse immunosignals of SP-G and vascular elements existed throughout all models. Despite local associations between SP-G and the vasculature, a definite co-localization was not seen. Along with a decreased SP-G-immunoreactivity in ischemic areas, signals originating from neurons, glial elements, and the extracellular matrix exhibited morphological alterations or changed intensities. Collectively, this study revealed regional alterations of SP-G, vascular, and non-vascular NVU elements after ischemia, and may thus stimulate the discussion about the role of SP-G during stroke.  相似文献   

18.
Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48–72 h after the insult), the subacute phase (from 72 h to 7–10 days) and chronic stage (from 10–14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).  相似文献   

19.
Transient forebrain or global ischemia induces neuronal death in vulnerable CA1 pyramidal cells with many features. A brief period of ischemia, i.e., ischemic preconditioning, or a modified reperfusion such as ischemic postconditioning, can afford robust protection of CA1 neurons against ischemic challenge. Therefore, we investigated the effect of ischemic preconditioning and postconditioning on neural cell apoptosis in rats. The result showed that both ischemic preconditioning and postconditioning may attenuate the neural cell death and DNA fragment in the hippocampal CA1 region. Further western blot study suggested that ischemic preconditioning and postconditioning down-regulates the protein of cleaved caspase-3, caspase-6, caspase-9 and Bax, but up-regulates the protein Bcl-2. These findings suggest that ischemic preconditioning and postconditioning have a neuroprotective role on global brain ischemia in rats through the same effect on inhibition of apoptosis.  相似文献   

20.
Acute myocardial infarction (MI) is one of the most common causes of death worldwide. Pituitary adenylate cyclase activating polypeptide (PACAP) is a cardioprotective neuropeptide expressing its receptors in the cardiovascular system. The aim of our study was to examine tissue PACAP-38 in a translational porcine MI model and plasma PACAP-38 levels in patients with ST-segment elevation myocardial infarction (STEMI). Significantly lower PACAP-38 levels were detected in the non-ischemic region of the left ventricle (LV) in MI heart compared to the ischemic region of MI-LV and also to the Sham-operated LV in porcine MI model. In STEMI patients, plasma PACAP-38 level was significantly higher before percutaneous coronary intervention (PCI) compared to controls, and decreased after PCI. Significant negative correlation was found between plasma PACAP-38 and troponin levels. Furthermore, a significant effect was revealed between plasma PACAP-38, hypertension and HbA1c levels. This was the first study showing significant changes in cardiac tissue PACAP levels in a porcine MI model and plasma PACAP levels in STEMI patients. These results suggest that PACAP, due to its cardioprotective effects, may play a regulatory role in MI and could be a potential biomarker or drug target in MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号