首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Benzene is a widely recognized human carcinogen. The mechanism of DNA damage induced by major benzene metabolites 1,4-benzoquinone (1,4-BQ) and hydroquinone (1,4-HQ) was investigated in relation to apoptosis and carcinogenesis. Pulsed-field gel electrophoresis showed that cellular DNA strand breakage was induced by benzene metabolites. Internucleosomal DNA fragmentation and morphological changes of apoptotic cells were observed at higher concentrations of benzene metabolites. Flow cytometry showed an increase of peroxides in cultured cells treated with benzene metabolites. 1,4-BQ induced these changes at a much lower concentration than 1,4-HQ. Damage to DNA fragments obtained from the c-Ha-ras-1 proto-oncogene was investigated by a DNA sequencing technique. 1,4-BQ + NADH and 1,4-HQ induced piperidine-labile sites frequently at thymine residues in the presence of Cu(II). Catalase and bathocuproine inhibited DNA damage, suggesting that H2O2 reacts with Cu(I) to produce active species causing DNA damage. Electron spin resonance studies showed that semiquinone radical was produced by NADH-mediated reduction of 1,4-BQ and autoxidation of 1,4-HQ, suggesting that benzene metabolites produce O2- and H2O2 via the formation of semiquinone radical. These results suggest that these benzene metabolites cause DNA damage through H2O2 generation in cells, preceding internucleosomal DNA fragmentation leading to apoptosis. The fates of the cells to apoptosis or mutation might be dependent on the intensity of DNA damage and the ability to repair DNA.  相似文献   

2.
Thirty-six outpatients aged 20 to 51 with RDC primary major depressive disorder (MDD) completed a 5-week trial of desipramine following a week of single-blind placebo. Five had a past history of hypomanic disorder. For all but one patient, daily dosage at bedtime was constant for the final 4 weeks, with a mean (S.D.) of 168.1 (46.5) mg. Plasma samples drawn at the three final weekly visits were assayed by high-performance liquid chromatography for 2-hydroxydesipramine (2-OH-DMI) and desipramine. Mean (S.D.) plasma levels were 59.8 (30.0) ng/ml for 2-OH-DMI and 142.9 (138.6) ng/ml for desipramine. Thirteen patients (36%) had a final 17-item Hamilton depression rating < and = 6 and were classified as responders. According to receiver operating characteristics analysis, patients with plasma 2-OH-DMI levels > and = 58 and < 92 ng/ml had a greater likelihood of responding than those with lower or higher levels (p = 0.005, Fisher's exact test), while patients with plasma desipramine levels > and = 64 ng/ml were more likely to respond than those with lower levels (p = 0.032, Fisher's exact test). Results using an alternate response criterion were similar. These findings suggest that in desipramine-treated outpatients with primary MDD the relationship between therapeutic response and plasma levels is curvilinear for 2-OH-DMI and linear for desipramine.  相似文献   

3.
Seven oxidized DNA bases were quantified, by gas GC/MS-SIM, in chromatin from gamma-rays and H2O2 treated mouse lymphoma L5178Y (LY) cells, inversely cross-sensitive to these agents. In H2O2 treated cells (2 mM, 1 h, 37 degrees C) we found more damage in LY-R cells than in LY-S cells. On the contrary, in gamma-rays (400 Gy) treated cells we found more damaged DNA bases in LY-S cells. The yield of damaged bases in control cells was similar in both cell lines, with the exception of 8OHAde and FapyGua that were found at a much higher level in LY-S cells. The yields of damaged bases were related to cellular sensitivity to damaging agent; this observation points to a relationship between DNA base damage induction, antioxidant defense system in the intracellular milieu and cell sensitivity.  相似文献   

4.
OBJECTIVE: The aim was to investigate the interaction of the novel antioxidant N-methyl hexanoylhydroxamic acid (NMHH) with myoglobin in protecting endothelial cells against H2O2 mediated damage. METHODS: Cultured bovine aortic endothelial cells were exposed to 50-100 microM H2O2 for 10-60 min with and without NMHH and/or myoglobin, and immediate or delayed damage was assessed by lactate dehydrogenase release, 3H adenine uptake, a tetrazolium reduction assay, and microscopy. RESULTS: Brief exposure to low concentrations of H2O2 caused cell damage, for which the tetrazolium reduction assay was the most sensitive assay, and inhibited subsequent cell division. NMHH in concentrations from 50 to 200 microM protected against damage provided it was present at the time of adding H2O2, and the effect was markedly potentiated by 10 microM oxymyoglobin, which had little protective effect alone. CONCLUSIONS: NMHH is an effective antioxidant which is markedly potentiated by low concentrations of oxymyoglobin. Oxymyoglobin may potentiate NMHH by scavenging H2O2 through the rapid formation of ferrylmyoglobin, which is then reduced by NMHH. This synergism may be particularly relevant to the protection of myoglobin-rich cells such as myocytes.  相似文献   

5.
This study examined the effect of the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, on mesangial cell (MC) DNA synthesis induced by H2O2, IL-6 and PDGF. MC were incubated with enalaprilat (2.5-100 mumol/l) alone and together with combinations of H2O2 (3 daily pulses of 10(-6) mol/l), IL-6 (5 ng/ml) and PDGF (10 ng/ml). DNA synthesis was assessed after 72 h using [3H]thymidine (3H-TdR) incorporation. Enalaprilat alone had no effect on MC DNA synthesis. Stimulation of MC by H2O2, PDGF and IL-6 alone resulted in increases in 3H-TdR of 4936.6 +/- 1147.5, 5640.5 +/- 1537.6 and 4413.5 +/- 998.4 cpm, respectively (P < 0.05 above control). Only 2.5 mumol/l enalaprilat effected a significant reduction in IL-6 and PDGF-induced DNA synthesis. Incubation of MC with H2O2 + PDGF or H2O2 + IL-6 resulted in increases of 3H-TdR of 6471.9 +/- 1785.1 and 5507.2 +/- 1270 cpm, respectively (P < 0.05 above control). Addition of enalaprilat with either H2O2 + PDGF or H2O2 + IL-6 effected significant reductions in DNA synthesis over the range 2.5-100 mumol/l. These data demonstrate that ACE inhibitors modulate MC DNA synthesis induced by reactive oxygen species.  相似文献   

6.
7.
The incubation of asbestos with DNA in presence of peroxides augmented DNA damage several fold as compared to the damage caused by individual treatments. Asbestos in presence of hydrogen peroxide causes DNA double strand breaks, damage to its deoxyribose sugar moiety and enhanced DNA fidelity. However, only DNA double strand breaks and enhanced DNA fidelity could be recorded in presence of organic hydroperoxide/peroxide but no DNA sugar damage could be observed. Further, the extent of DNA damage could be correlated to the carcinogenic potential of asbestos fibre. Crocidolite, the most carcinogenic variety of asbestos, produces maximum damage to DNA in presence of both hydrogen peroxide and organic hydroperoxide/peroxide while chrysolite which is only a co-carcinogen produces significantly less DNA damage. The observed differences in DNA damage by hydrogen peroxide and organic hydroperoxide/peroxide have been ascribed to the differential reactivity of DNA with hydroxyl and alkoxy/aryloxy free radicals produced respectively from these inorganic and organic peroxides.  相似文献   

8.
9.
The composition and stability constants of the complexes of Zn(II), Pb(II), Cd(II) and Cu(II) with hematoxylin have been studied using direct current polarography and differential pulse polarography. The results showed the formation of 1:2 (M:L) complexes for Zn(II) and Pb(II), and a 1:6 (M:L) complex for Cd(II). However, the formation of copper-hematoxylin complex is irreversible. The values of the formation constants for the above complexes at 298, 308 and 318K were calculated as well as the relevant thermodynamic parameters.  相似文献   

10.
Nickel(II) and cadmium(II) have been shown previously to inhibit the incision step of nucleotide excision repair. By applying a gel-mobility-shift assay and HeLa nuclear extracts the effect of both metals on the damage recognition step of the repair process was investigated. Two proteins of 34 and 40 kDa were identified that bind with high affinity to a UV-irradiated synthetic oligonucleotide. When applying nuclear extracts from HeLa cells treated with 50 microM nickel(II) and higher, there was a dose-dependent decrease in protein binding; this effect was largely reversible by the addition of magnesium(II) to the binding reaction. In the case of cadmium(II), a dose-dependent inhibition of DNA-protein interactions was detected at 0.5 microM and higher, which was almost completely reversible by the addition of zinc(II). Therefore, compounds of both metals disturb DNA-protein interactions essential for the initiation of nucleotide excision repair most likely by the displacement of essential metal ions.  相似文献   

11.
Previous studies by others have shown that thiols, such as glutathione, cause cleavage of DNA in the presence of Cu(II) ions and that the hydroxyl radical derived from molecular oxygen is the major cleaving species. In this paper, we present several lines of evidence that strongly suggest that molecular oxygen is not essential for DNA cleavage and that thiyl radicals may also be involved. Indirect evidence is presented to indicate that glutathione may substitute oxygen as an electron acceptor. In addition, DNA degradation occurs to a significant extent under anaerobic conditions and no inhibition of single-strand cleavage of supercoiled plasmid DNA is seen in the presence of superoxide dismutase and catalase. In view of the ubiquitous presence of glutathione, these results could be of interest under certain diseased conditions where copper concentrations are elevated.  相似文献   

12.
Oxidative DNA damage by NAD(P)H in the presence of metal ions has been characterized by using 32P 5' end-labeled DNA fragments obtained from human p53 tumor suppressor gene and c-Ha-ras-1 protooncogene. NADH, as well as other endogenous reductants, induced DNA damage in the presence of Cu(II). The order of inducing effect on Cu(II)-dependent DNA damage was ascorbate > reduced glutathione (GSH) > NADH > NADPH. Although NADH caused no or little DNA damage in the presence of Fe(III)-EDTA, the addition of H2O2 induced the DNA damage. The Cu(II)-mediated DNA damage induced by NADH was inhibited by catalase and bathocuproine, a Cu(I)-specific chelator; but not by scavengers of hydroxyl free radical (.OH), suggesting the involvement of active species derived from hydrogen peroxide (H2O2) and Cu(I) rather than .OH. The predominant cleavage sites were thymine residues located 5' and/or 3' to guanine. The cleavage pattern was similar to that induced by Cu(II) plus GSH, Cu(II) plus ascorbate, or Cu(I) plus H2O2. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by NADH increased with its concentration in the presence of Cu(II). UV-visible spectroscopy indicated the facilitation of reduction of Cu(II) by NADH under some conditions. ESR spin-trapping experiments and mass spectrometry showed that the carbon-centered radical was formed during the reaction of NADH with Cu(II). These results suggest that optimal molar ratios of DNA/metal ion yield copper with a high redox potential which catalyzes NADH autoxidation to NAD. being further oxidized to NAD+ with generation of superoxide radical and that H2O2 reacts with Cu(I) to form active oxygen species such as copper(I)-peroxide complex causing DNA damage.  相似文献   

13.
Caspase-3(-like) proteases play important roles in controlling mammalian apoptosis. However, the downstream events from the caspase-3(-like) protease activation to death of cells are still unclear. Previously, we reported that hydrogen peroxide (H2O2) was generated by the activation of caspase-3(-like) proteases in the process of tyrosine kinase inhibitor-induced apoptosis in human small cell lung carcinoma Ms-1 cells. In the present study, we examined whether generation of H2O2 is a critical event for the apoptotic pathway downstream of caspase-3(-like) protease activation by various anticancer drugs. Anticancer drugs such as camptothecin, vinblastine, inostamycin, and adriamycin induced activation of caspase-3(-like) proteases and apoptosis. Generation of H2O2 was commonly detected after treatment with each of the four anticancer drugs, and scavenging of H2O2 caused cells to fail to undergo apoptosis. Moreover, anticancer drug-induced H2O2 production was inhibited not only by an inhibitor of caspase-3(-like) proteases but also by diphenyleneiodonium chloride, an inhibitor of flavonoid-containing enzymes such as NADPH oxidase. However, activation of caspase-3(-like) proteases was not inhibited by diphenyleneiodonium chloride. These findings suggest that activation of caspase-3(-like) proteases by various anticancer drugs causes generation of H2O2 presumably through the activation of NADPH oxidase, thereby inducing apoptosis. Therefore, H2O2 may function as a common mediator for apoptosis induced by various anticancer drugs.  相似文献   

14.
OBJECTIVES: The external striated urethral sphincter (rhabdosphincter) is a tubular muscle sleeve that extends from the prostato-membranous urethra and perineal membrane to the bladder neck. The male rhabdosphincter neuroanatomy remains unclear, and a better understanding of its innervation may provide insight into potential modifications of radical pelvic surgery to improve urinary continence. METHODS: Fresh cadaveric dissections of 12 male hemipelves were undertaken to investigate the neuroanatomy of the urinary rhabdosphincter. RESULTS: Neuroanatomic courses of the nerve supply to the rhabdosphincter revealed that, in the perineum, the perineal nerve (a terminal branch of the pudendal nerve) provided branches directly to the bulbospongiosus muscle and the urinary rhabdosphincter. In the pelvis, the course of the pelvic nerve was as follows: (1) arising from the inferior hypogastric plexus, it had a weblike course beneath the muscle fascia of the levator ani muscle; (2) traveling posterolateral to the rectum, it gave many branches that perforated into the lateral rectum; and (3) at the level of the prostatic apex, still beneath the levator ani muscle fascia (superior fascia), it sent multiple direct branches to the inferolateral aspect of urinary rhabdosphincter. The pudendal nerve traversed the pelvis in the pudendal canal, and, before leaving the pelvis to enter the perineum, it gave an intrapelvic branch that courses with the pelvic nerve to innervate the rhabdosphincter. CONCLUSIONS: Our understanding of the neuroanatomy of what may be the continence nerves has been improved by fresh cadaveric dissection. The rhabdosphincter receives nerve fibers from the pelvic nerve and dual innervation from an intrapelvic branch and a perineal branch of the pudendal nerve. Better understanding of these anatomic findings may have potential surgical significance with respect to improvement in postoperative urinary continence.  相似文献   

15.
The cortical deposition of Abeta is an event that occurs in Alzheimer's disease, Down's syndrome, head injury, and normal aging. Previously, in appraising the effects of different neurochemical factors that impact upon the solubility of Abeta, we observed that Zn2+ was the predominant bioessential metal to induce the aggregation of soluble Abeta at pH 7.4 in vitro and that this reaction is totally reversible with chelation. We now report that unlike other biometals tested at maximal biological concentrations, marked Cu2+-induced aggregation of Abeta1-40 emerged as the solution pH was lowered from 7.4 to 6.8 and that the reaction was completely reversible with either chelation or alkalinization. This interaction was comparable to the pH-dependent effect of Cu2+ on insulin aggregation but was not seen for aprotinin or albumin. Abeta1-40 bound three to four Cu2+ ions when precipitated at pH 7.0. Rapid, pH-sensitive aggregation occurred at low nanomolar concentrations of both Abeta1-40 and Abeta1-42 with submicromolar concentrations of Cu2+. Unlike Abeta1-40, Abeta1-42 was precipitated by submicromolar Cu2+ concentrations at pH 7.4. Rat Abeta1-40 and histidine-modified human Abeta1-40 were not aggregated by Zn2+, Cu2+, or Fe3+, indicating that histidine residues are essential for metal-mediated Abeta assembly. These results indicate that H+-induced conformational changes unmask a metal-binding site on Abeta that mediates reversible assembly of the peptide. Since a mildly acidic environment together with increased Zn2+ and Cu2+ are common features of inflammation, we propose that Abeta aggregation by these factors may be a response to local injury. Cu2+, Zn2+, and Fe3+ association with Abeta explains the recently reported enrichment of these metal ions in amyloid plaques in Alzheimer's disease.  相似文献   

16.
Physico-chemical and immunological studies have been done in order to further characterize the distorsions induced in DNA by the interstrand cross-links formed between the antitumor drug cis-diamminedichloroplatinum (II) (cis-DDP) and two guanines on the opposite strands of DNA at the d(GC/GC) sites. Bending (45 degrees) and unwinding (79 +/- 4 degrees) were determined from the electrophoretic mobility of multimers of 21- 24-base pairs double-stranded oligonucleotides containing an interstrand cross-link in the central sequence d(TGCT/AGCA). The distorsions induced by the interstrand cross-link in the three 22-base pairs oligonucleotides d(TGCT/AGCA), d(AGCT/AGCT) and d(CGCT/AGCG) were compared by means of gel electrophoresis, circular dichroism, phenanthroline-copper footprinting and antibodies specifically directed against cis-DDP interstrand cross-links. The four different technical approaches indicate that the distorsions are independent of the chemical nature of the base pairs adjacent to the interstrand cross-link. The general conclusion is that the interstrand cross-link induces a bending and in particular an unwinding larger than other platinum adducts and the distorsions are independent of the nature of the bases (purine or pyrimidine) adjacent to the d(GC/GC) site.  相似文献   

17.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillinidene-4-aminoantipyrine and o-phenylenediamine were synthesized and characterized by elemental analysis, 1H-NMR, 13C-NMR, molar conductance, infrared, electronic, magnetic measurements, cyclic voltammetry, powder XRD and SEM. The IR results demonstrate that the co-ordination sites are the four azomethine nitrogen atoms. The electronic spectral and magnetic measurement data indicate that the complexes exhibit octahedral geometry. Powder XRD displays the crystalline nature of Co(II) and Zn(II) complexes. The SEM images reveal that all the complexes have almost similar morphologies with broken-stone like structure. The in vitro biological screening effects of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species, Aspergillus niger, Aspergillus flavus and Candida albicans by the disc diffusion method and the results show that the metal complexes are more biological active than the ligand.  相似文献   

18.
Three techniques: single cell gel electrophoresis (SCGE), alkaline elution of DNA (AE), and alkaline DNA unwinding (ADU) were chosen to compare the sensitivity among these methods in detection of DNA damage and repair in human diploid VH10 cell line after short-term exposure to hydrogen peroxide. Using SCGE technique a dose-dependent increase in DNA migration was found in cells exposed to hydrogen peroxide in concentration range from 10 micromol/l to 100 micromol/l. Alkaline DNA unwinding method detected increased level of single strand breaks (ssb) in concentration range from 25 micromol/l to 100 micromol/l of H2O2, and alkaline elution of DNA estimated increased DNA elution rate from concentration 50 micromol/l of H2O2. In a time course study to evaluate the kinetics of DNA repair, both SCGE and ADU techniques showed that the repair of DNA strand breaks is very rapid; the level of ssb in treated cells has returned to near the background level within two hours. After this time damage remaining in the DNA was in the form of oxidised bases as revealed the incubation of treated cells with specific DNA repair endonuclease, formamidopyrimidine-DNA glycosylase.  相似文献   

19.
The ability of tirapazamine (1, 3-amino-1,2,4-benzotriazine 1, 4-dioxide, SR4233) to fix DNA radical lesions is demonstrated by studying the reaction between the antitumor drug and an oligonucleotide radical that is independently produced at a defined site within a biopolymer. Using beta-mercaptoethanol as a competitor, it was determined that tirapazamine traps a C1'-nucleotide radical with a rate constant of approximately 2 x 10(8) M-1 s-1. Product and isotopic labeling studies suggest that tirapazamine reacts with the radical via covalent adduct formation, resulting primarily from reaction at the N-oxide oxygen. Intermediate covalent adducts could not be observed, but are postulated to decompose to the alkaline labile 2'-deoxyribonolactone lesion. These experiments affirm recent proposals suggesting that tirapazamine can serve as a surrogate for O2 in converting DNA radicals into toxic strand damage events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号