首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of human mitogen-activated protein kinase kinase 1 (MKK1) is achieved by phosphorylation at Ser218 and Ser222 within a regulatory loop. Partial activation was achieved by replacing these residues with aspartic/glutamic acid. Higher activity was obtained by introducing four acidic residue substitutions in the regulatory loop, indicating that acidic residues in the loop stabilize an active configuration by the introduction of negative charge. Activation of MKK1 is also achieved by deleting residues 44-51, N-terminal to the consensus catalytic core. Although substitution of residues within this segment by alanine does not affect activity, introduction of proline residues elevates kinase activity, indicating that activation results from perturbation of secondary structure within residues 44-51. Pseudosubstrate inhibition, a commonly observed mechanism of kinase regulation, is not operative in this process. Both the acidic substitutions and the N-terminal deletion increase Vmax, V/K(m),ERK2, and V/K(m),ATP, as is also observed following phosphorylation of wild-type MKK1. A synergistic enhancement of these steady-state rate parameters occurs upon combining the mutations, suggesting that conformational changes induced by mutagenesis together mimic those seen upon phosphorylation.  相似文献   

2.
NF-kappaB is activated by various stimuli including inflammatory cytokines and stresses. A key step in the activation of NF-kappaB is the phosphorylation of its inhibitors, IkappaBs, by an IkappaB kinase (IKK) complex. Recently, two closely related kinases, designated IKKalpha and IKKbeta, have been identified to be the components of the IKK complex that phosphorylate critical serine residues of IkappaBs for degradation. A previously identified NF-kappaB-inducing kinase (NIK), which mediates NF-kappaB activation by TNFalpha and IL-1, has been demonstrated to activate IKKalpha. Previous studies showed that mitogen-activated protein kinase/ERK kinase kinase-1 (MEKK1), which constitutes the c-Jun N-terminal kinase/stress-activated protein kinase pathway, also activates NF-kappaB by an undefined mechanism. Here, we show that overexpression of MEKK1 preferentially stimulates the kinase activity of IKKbeta, which resulted in phosphorylation of IkappaBs. Moreover, a catalytically inactive mutant of IKKbeta blocked the MEKK1-induced NF-kappaB activation. By contrast, overexpression of NIK stimulates kinase activities of both IKKalpha and IKKbeta comparably, suggesting a qualitative difference between NIK- and MEKK1-mediated NF-kappaB activation pathways. Collectively, these results indicate that NIK and MEKK1 independently activate the IKK complex and that the kinase activities of IKKalpha and IKKbeta are differentially regulated by two upstream kinases, NIK and MEKK1, which are responsive to distinct stimuli.  相似文献   

3.
The mitogen-activated kinase activating death domain protein (MADD) that is differentially expressed in neoplastic vs. normal cells (DENN) was identified as a substrate for c-Jun N-terminal kinase 3, the first demonstration of such an activity for this stress-activated kinase that is predominantly expressed in the brain. A splice isoform was identified that is a variant of MADD. A protein identical to MADD has been reported to be expressed differentially in neoplastic vs. normal cells and is termed "DENN." We demonstrated differential effects on DENN/MADD in a stressed vs. basal environment. Using in situ hybridization, we localized both the substrate and the kinase to large pyramidal neurons in the human hippocampus. It was interesting that, in four of four patients with neuropathologically confirmed acute hypoxic changes, we detected a unique translocation of DENN/MADD to the nucleolus. These changes were apparent only in neurons sensitive to hypoxia. Moreover, in those cells, translocation of the substrate was accompanied by nuclear translocation of JNK3. These findings place DENN/MADD and JNK in important hypoxia insult-induced intracellular signaling pathways. Our conclusions are important for future studies for understanding these stress-activated mechanisms.  相似文献   

4.
The present study describes the cloning of two novel serine/threonine kinases termed DRAK1 and DRAK2, whose catalytic domains are related to that of death-associated protein kinase, a serine/threonine kinase involved in apoptosis. Both DRAKs are composed of the N-terminal catalytic domain and the C-terminal domain that is responsible for regulation of kinase activity. DRAK1 and DRAK2 show 59.7% identity and display ubiquitous expression. An in vitro kinase assay revealed that both DRAKs are autophosphorylated and phosphorylate myosin light chain as an exogenous substrate, although the kinase activity of DRAK2 is significantly lower than that of DRAK1. Both DRAKs are exclusively localized to the nucleus. Furthermore, overexpression of both DRAKs induces the morphological changes of apoptosis in NIH 3T3 cells, suggesting the role of DRAKs in apoptotic signaling.  相似文献   

5.
In mammals, an AMP-activated protein kinase (AMPK) phosphorylates both acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase in vitro and has been proposed to play a major role in the regulation of lipid metabolism in vivo. We report here the primary sequence of rat AMPK and show that antibodies raised against synthetic peptides based on the deduced sequence of AMPK immunoprecipitate AMPK activity from rat liver extracts. AMPK has a remarkable degree of sequence identity to the proteins encoded by the yeast SNF1 gene and the plant RKIN1 gene. SNF1 protein kinase activity is essential for release of genes from glucose repression in Saccharomyces cerevisiae. Expression of cRKIN1 in yeast snf1 mutants restores SNF1 function. These results indicate that AMPK, SNF1, and RKIN1 form part of a family of protein kinases that have been highly conserved throughout evolution. Our results suggest that AMPK may be involved in the regulation of a wide range of metabolic pathways.  相似文献   

6.
Protein kinase C-mediated phosphorylation of a 25-kDa synaptosome-associated protein (SNAP-25) was examined in living PC12 cells. Phorbol 12-myristate 13-acetate treatment enhanced high potassium-induced [3H]-norepinephrine release, and a 28-kDa protein recognized by an anti-SNAP-25 antibody was phosphorylated on Ser residues. The molecular size of the phosphorylated band decreased slightly following treatment with Clostridium botulinum type A neurotoxin, whereas the band disappeared after treatment with botulinum type E neurotoxin, indicating that the 28-kDa protein was SNAP-25. A phosphorylation is likely to occur at Ser187, as this is the only Ser residue located between the cleavage sites of botulinum type A and E neurotoxins. SNAP-25 of PC12 cells was phosphorylated by purified protein kinase C in vitro, and the amount of syntaxin co-immunoprecipitated with SNAP-25 was decreased by phosphorylation. These results suggest that the phosphorylation of SNAP-25 may be involved in protein kinase C-mediated regulation of catecholamine release from PC12 cells.  相似文献   

7.
8.
9.
Hormones and growth factors regulate cell growth via the mitogen-activated protein (MAP) kinase cascade. Here we examine the actions of the hormone somatostatin on the MAP kinase cascade through one of its two major receptor subtypes, the somatostatin receptor 1 (SSTR1) stably expressed in CHO-K1 cells. Somatostatin antagonizes the proliferative effects of fibroblast growth factor in CHO-SSTR1 cells via the SSTR1 receptor. However, in these cells, somatostatin robustly activates MAP kinase (also called extracellular signal regulated kinase; ERK) and augments fibroblast growth factor-stimulated ERK activity. We show that the activation of ERK via SSTR1 is pertussis toxin sensitive and requires the small G protein Ras, phosphatidylinositol 3-kinase, the serine/threonine kinase Raf-1, and the protein tyrosine phosphatase SHP-2. The activation of ERK by SSTR1 increased the expression of the cyclin-dependent protein kinase inhibitor p21(cip1/WAF1). Previous studies have suggested that somatostatin-stimulated protein tyrosine phosphatase activity mediates the growth effects of somatostatin. Our data suggest that SHP-2 stimulation by SSTR1 may mediate some of these effects through the activation of the MAP kinase cascade and the expression of p21(cip1/WAF1).  相似文献   

10.
11.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

12.
13.
The thrombopoietin (TPO) receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. We investigated the effect of TPO on the extracellular signal-regulated kinase (ERK) activation pathway in human platelets. TPO by itself did not activate ERK1, ERK2 and protein kinase C (PKC), whereas TPO directly enhanced the PKC-dependent activation of ERKs induced by other agonists including thrombin and phorbol esters, without affecting the PKC activation by those agonists. TPO did not activate the mitogen-activated protein kinase/ERK kinases, MEK1 and MEK2, but activated Raf-1 and directly augmented the PKC-mediated MEK activation, suggesting that TPO primarily potentiates the ERK pathway through regulating MEKs or upstream steps of MEKs including Raf-1. The MEK inhibitor PD098059 failed to affect not only thrombin-induced or phorbol ester-induced aggregation, but also potentiation of aggregation by TPO, denying the primary involvement of ERKs and MEKs in those events. ERKs and MEKs were located mainly in the detergent-soluble/non-cytoskeletal fractions. ERKs but not MEKs were relocated to the cytoskeleton following platelet aggregation and actin polymerization. These data indicate that TPO synergizes with other agonists in the ERK activation pathway of platelets and that this synergy might affect functions of the cytoskeleton possibly regulated by ERKs.  相似文献   

14.
15.
Mitogen-activated protein (MAP) kinase pathways include a three-kinase cascade terminating in a MAP kinase family member. The middle kinase in the cascade is a MAP/extracellular signal-regulated kinase (ERK) kinase or MEK family member and is highly specific for its MAP kinase target. The first kinase in the cascade, a MEK kinase (MEKK), is characterized by its ability to activate one or more MEK family members. A two-plasmid bacterial expression system was employed to express active forms of the following MEK and MAP kinase family members: ERK1, ERK2, alpha-SAPK, and p38 and their upstream activators, MEK1, -2, -3, and -4. In each kinase module, the upstream activator, a constitutively active mutant of MEK1 or MEKK1, was expressed from a low copy plasmid, while one or two downstream effector kinases were expressed from a high copy plasmid with different antibiotic resistance genes and origins of replication. Consistent with their high activity, ERK1 and ERK2 were doubly phosphorylated on Tyr and Thr, were recognized by an antibody specific to the doubly phosphorylated forms, and were inactivated by either phosphoprotein phosphatase 2A or phosphotyrosine phosphatase type 1. Likewise, activated p38 and alpha-stress-activated protein kinase could also be inactivated by either phosphatase, and alpha-stress-activated protein kinase was recognized by an antibody specific to the doubly phosphorylated forms. These three purified, active MAP kinases have specific activities in the range of 0.6-2.3 micromol/min/mg. Coexpression of protein kinases with their substrates in bacteria is of great value in the preparation of numerous phosphoproteins, heretofore not possible in procaryotic expression systems.  相似文献   

16.
The stress-activated protein kinase (SAPK) and mitogen-activated protein kinase (MAPK) cascades mediate cytotoxic and cytoprotective functions, respectively, in the regulation of leukemic cell survival. Involvement of these signaling systems in the cytotoxicity of 1-beta-D-arabinofuranosylcytosine (ara-C) and modulation of ara-C lethality by protein kinase C PKC inhibition/down-regulation was examined in HL-60 promyelocytic leukemia cells. Exposure to ara-C (10 microM) for 6 hr promoted extensive apoptotic DNA damage and cell death, as well as activation of PKC. This response was accompanied by downstream activation of the SAPK and MAPK cascades. PKC-dependent MAPK activity seemed to limit ara-C action in that the toxicity of ara-C was enhanced by pharmacological reductions of PKC, MAPK, or both. Thus, ara-C action was (1) partially attenuated by diradylglycerols, which stimulated PKC and MAPK, but (2) dramatically amplified by sphingoid bases, which inhibited PKC and MAPK. The cytotoxicity of ara-C also was substantially increased by pharmacological reductions of PKC, including down-regulation of PKC by chronic preexposure to the macrocyclic lactone bryostatin 1 or inhibition of PKC by acute coexposure to the dihydrosphingosine analog safingol. Significantly, both of these manipulations prevented activation of MAPK by ara-C. Moreover, acute disruption of the MAPK module by AMF, a selective inhibitor of MEK1, suppressed both basal and drug-stimulated MAPK activity and sharply increased the cytotoxicity of ara-C, suggesting the direct involvement of MAPK as a downstream antiapoptotic effector for PKC. None of these chemopotentiating agents enhanced ara-CTP formation. Ceramide-driven SAPK activity did not seem to mediate drug-induced apoptosis, given that (1) neutralization of endogenous tumor necrosis factor-alpha with monoclonal antibodies or soluble tumor necrosis factor receptor substantially reduced ceramide generation and SAPK activation by ara-C, whereas the induction of apoptosis was unaffected; (2) pharmacological inhibition of sphingomyelinase by 3-O-methoxysphingomyelin reduced ceramide generation and SAPK activation without limiting the drug's cytotoxicity; and (3) potentiation of ara-C action by bryostatin 1 or safingol was not associated with further stimulation of SAPK. These observations collectively suggest a primary role for decreased MAPK, rather than increased SAPK, in the potentiation of ara-C cytotoxicity by interference with PKC-dependent signaling.  相似文献   

17.
Drug design targeted at microtubules has led to the advent of some potent anti-cancer drugs. In the present study, we demonstrated that microtubule-binding agents (MBAs) taxol and colchicine induced immediate early gene (c-jun and ATF3) expression, cell cycle arrest, and apoptosis in the human breast cancer cell line MCF-7. To elucidate the signal transduction pathways that mediate such biological activities of MBAs, we studied the involvement of mitogen-activated protein (MAP) kinases. Treatment with taxol, colchicine, or other MBAs (vincristine, podophyllotoxin, nocodazole) stimulated the activity of c-jun N-terminal kinase 1 (JNK1) in MCF-7 cells. In contrast, p38 was activated only by taxol and none of the MBAs changed the activity of extracellular signal-regulated protein kinase 2 (ERK2). Activation of JNK1 or p38 by MBAs occurred subsequent to the morphological changes in the microtubule cytoskeleton induced by these compounds. Furthermore, baccatine III and beta-lumicolchicine, inactive analogs of taxol and colchicine, respectively, did not activate JNKI or p38. These results suggest that interactions between microtubules and MBAs are essential for the activation of these kinases. Pretreatment with the antioxidants N-acetyl-L-cysteine (NAC), ascorbic acid or vitamin E, blocked H2O2- or doxorubicin-induced JNKI activity, but had no effect on JNKI activation by MBAs, excluding a role for oxidative stress. However, BAPTA/AM, a specific intracellular Ca2+ chelator, attenuated JNK1 activation by taxol but not by colchicine, and had no effect on microtubule changes induced by taxol. Thus, stabilization or depolymerization of microtubules may regulate JNK1 activity via distinct downstream signaling pathways. The differential activation of MAP kinases opens up a new avenue for addressing the mechanism of action of antimicrotubule drugs.  相似文献   

18.
The GT1-1 GnRH neuronal cell lines exhibit highly differentiated properties of GnRH neurons. We have used GT1-1 cells to study the roles of norepinephrine (NE), membrane depolarization, calcium influx, and phorbol esters in the regulation of mitogen-activated protein (MAP) kinase. NE, which is known to stimulate the release of GnRH, induced MAP kinase activity, the tyrosine phosphorylation of MAP kinase, and MAP kinase kinase activity. Forskolin led to activation of MAP kinase comparable with that induced by NE, and a selective inhibitor of cAMP-dependent protein kinase, H8, attenuated the NE-induced activation of MAP kinase. On the other hand, elimination of extracellular calcium by EGTA completely blocked NE-induced tyrosine phosphorylation of MAP kinase, and a selective inhibitor of calcium/calmodulin-dependent protein kinase, KN-62, attenuated the NE-induced activation of MAP kinase. Furthermore, depolarization of GT1-1 cells with 75 mM KCl, 10 microM BayK 8644, or 1 microM calcium ionophore (A23187) induced rapid tyrosine phosphorylation of MAP kinase. The omission of calcium from the extracellular medium completely abolished these effects of tyrosine phosphorylation of MAP kinase. Phorbol 12-myristate 13-acetate (PMA) also induced MAP kinase activity, but pretreatment of the cultured cells with PMA to down-regulate protein kinase C did not abolish the activation of MAP kinase by NE. In addition, although phosphorylation of Raf-1 kinase was stimulated by PMA, this phosphorylation was not induced by either NE or A23187. These results demonstrate that NE activates MAP kinase directly in GT1-1 cells, and that the effect of NE is mediated by increase in the cAMP level and by calcium influx, but not by PMA-sensitive protein kinase C or Raf-1 kinase.  相似文献   

19.
We measured the activity of mitogen-activated protein (MAP) kinases, enzymes believed to be involved in the pathway for cell proliferation, in rat aortic strips with or without endothelium, and examined effects of angiotensin receptor antagonists, endothelin receptor antagonists and nitric oxide (NO)-related agents. Endothelium removal produced an activation of MAP kinase activity in the strips, whereas the enzyme activity was not affected in the adventitia. The MAP kinase activation was inhibited by either the angiotensin AT1 receptor antagonist losartan or the endothelin ETA receptor antagonist BQ 123. The combination of both antagonists caused an additive inhibition. The angiotensin AT2 receptor antagonist PD 123,319 and the endothelin ETB receptor antagonist BQ 788 did not affect the MAP kinase activation. The NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) caused an activation of MAP kinase in the endothelium-intact aorta and the MAP kinase activation was inhibited by losartan or BQ123. The NO releaser nitroprusside inhibited the MAP kinase activation induced by endothelium removal or angiotensin II. These results suggest that even in isolated arteries, NO of endothelial origin tonically exert MAP kinase-inhibiting effects and endogenous angiotensin II and endothelins in the media are tonically released to cause MAP kinase-stimulating effects in medial smooth muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号