首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
张晓辉  李龙  赵伟 《合成纤维》2010,39(8):16-19
将导电聚合物聚苯胺采用现场吸附聚合法吸附到涤纶织物表面上制备复合导电织物,通过单因素分析得出第一次聚合并掺杂的较优工艺条件为:苯胺浓度0.25mol/L,氧化剂过硫酸铵质量浓度0.02g/mL,掺杂剂盐酸浓度2.5mol/L,反应时间2h,反应温度20℃。若将经第一次聚合掺杂处理的织物在相同工艺参数条件下再经过第二次掺杂,则能显著提高导电织物的电学性能。从光学显微镜里可以看到聚苯胺沉积在纤维表面上,形成致密且均匀分布的连续导电膜。  相似文献   

2.
聚苯胺/涤纶导电纤维的制备(英文)   总被引:5,自引:0,他引:5  
先将涤纶在苯胺溶液中预浸泡 ,再将纤维置于氧化剂的酸溶液中使苯胺在纤维上氧化聚合 ,同时掺杂制得聚苯胺 /涤纶导电复合纤维。讨论了反应条件对纤维导电性能的影响。实验表明 ,采用此法制得的导电纤维具有较高的聚苯胺含量和优良的导电性能  相似文献   

3.
以聚苯胺为导电覆盖层制备导电性涤纶的研究   总被引:4,自引:0,他引:4  
将涤纶浸渍于苯胺和对甲苯磺酸溶液中,加入氧化剂使苯胺在涤纶上发生氧化聚合,制得聚苯胺/涤纶导电复合纤维。讨论了苯胺、介质酸的浓度及配比、反应温度和反应时间等对纤维导电性的影响。结果表明,采用此法制备的导电纤维具有良好的导电性能,物理机械性能及环境稳定性,其质量比电阻为1~10Ω·g/cm2。  相似文献   

4.
聚苯胺包覆导电涤纶的研制   总被引:4,自引:0,他引:4  
孙东豪 《合成纤维》1999,28(3):21-23,26
常压下,采用较简单的现场化学原位氧化聚合法将苯胺氧化聚合在涤纶的表皮,从而赋予纤维良好的导电性能,其表面电阻为10~3Ω /cm,并对纤维导电性能的耐洗性作了初步探索。  相似文献   

5.
采用微粒填充法技术制备了TiN/聚苯胺复合膜,对复合膜的导电性能以及对废水的光降解能力进行了探讨。结果表明TiN/聚苯胺复合膜具有良好的导电性能,并可有效的处理含有活性艳红(X-3B)染料的废水。  相似文献   

6.
微乳液法制备导电聚苯胺的研究   总被引:7,自引:3,他引:7  
采用微乳液法制备了导电聚苯胺 ,并详细讨论了聚合温度和氧化剂用量对聚苯胺粒子的粒径、导电性能和分子结构等影响  相似文献   

7.
聚苯胺是应用最为广泛的导电高分子材料之一,也是一类具有特殊功能的新型材料;其在隐形材料、防腐材料、抗静电材料等方面都有应用。文中主要阐述了聚苯胺的结构、导电机理及不同酸掺杂和聚合法等多种因素对聚苯胺导电性的影响,同时也对导电聚苯胺的应用前景进行了展望。  相似文献   

8.
聚苯胺/涤纶导电织物再掺杂及洗涤性能的研究   总被引:6,自引:0,他引:6  
采用现场吸附聚合法制备了聚苯胺 /涤纶导电织物 ,采用不同种类的酸对其进行再掺杂 ,研究了酸的种类对织物导电性能的影响 ,并对导电织物进行了洗涤实验及洗涤牢度实验。结果表明 :无机酸对导电织物的掺杂效果优于大多数有机酸。导电涤纶织物的导电性能受洗涤液酸碱度的影响 ,其中碱性洗涤液使导电性能降低 2个数量级 ,酸性洗涤液使导电性能下降 1个数量级 ,而且聚苯胺在涤纶织物表面具有良好的附着性  相似文献   

9.
以十二烷基苯磺酸钠为乳化剂,过硫酸铵为聚合引发剂,盐酸和细鳞片膨胀石墨为掺杂剂,利用乳液聚合法制备了细鳞片膨胀石墨/聚苯胺导电复合材料。通过正交实验,找到了膨胀石墨的掺杂量、盐酸用量、乳化剂及引发剂对电导率影响规律。最佳实验条件为:石墨掺杂6%,盐酸6mL,乳化剂5g,引发剂3.25g。该条件下的电导率为0.75S/cm。证明石墨的加入能有效提高聚苯胺的电导率。  相似文献   

10.
乳液聚合法制备聚苯胺及其导电性能   总被引:15,自引:1,他引:14       下载免费PDF全文
以十二烷基苯磺酸(DBSA)为乳化剂,十六醇(CA)为助乳化剂,盐酸和十二烷基苯磺酸(DBSA)为掺杂剂, 过硫酸铵为引发剂,采用乳液聚合法合成了导电聚苯胺(PAn).研究了反应温度、反应时间及苯胺、十二烷基磺酸、十六醇、盐酸和过硫酸铵配比对聚苯胺电导率的影响.研究结果表明,较佳的工艺条件为:反应温度为7 ℃,反应时间为6 h,较佳的原料物质的量的比为苯胺∶十二烷基苯磺酸∶十六醇∶盐酸∶ 过硫酸铵=0.05∶0.028∶0.04∶0.01∶0.05;以十六醇为助乳化剂,采用十二烷基苯磺酸和盐酸为掺杂剂,提高了聚苯胺的导电性.同时对聚苯胺导电机理进行了分析.  相似文献   

11.
导电纤维对填充型复合导电塑料导电性能的影响   总被引:2,自引:0,他引:2  
聚苯胺(PANI)是最重要的导电聚合物之一,近年来,其复合材料的研究和应用越来越受到重视。导电填料含量在渗滤阈值时,导电填料含量再稍微增加,导电粒子就互相接近而形成导电网络,电子在导电网络中传递而形成电流。本文介绍了导电纤维对填充型复合导电塑料导电性能的影响。  相似文献   

12.
Electrically conductive polyaniline/polyurethane foams were prepared. The DC conductivity of the composite prepared at pH = 0.505 is about 0.9 S/cm. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 893–897, 2001  相似文献   

13.
水溶性导电聚苯胺的制备及应用研究进展   总被引:3,自引:0,他引:3  
水溶性导电聚苯胺由于其优异的电性能和化学稳定性,具有潜在的实用性价值.总结了水溶性导电聚苯胺的制备方法,重点阐述了聚苯胺衍生物和共聚态聚苯胺的制备,提出了水溶性导电聚苯胺的发展方向.  相似文献   

14.
Intelligent and multifunctional yarns (textiles) have attracted interest because of their high potential in applications such as flexible displays, batteries, or sensors. The main objective of our research was to obtain the flexible and electrically conducting yarn based on the conductive polymer and polyethylene terephtalate (PET) yarns. Among the conductive polymers, polyaniline (PANI) is considered as a promising material and is well adapted for modifications of textile structure because of its excellent environmental, thermal, and chemical stability. Chemical PANI coating on PET yarns was performed by absorption of yarns through PANI solution. The electrical, mechanical, and electro‐mechanical properties of PET conductive yarns prepared were investigated. The environmental effects on the electrical and mechanical properties of the obtained conductive yarns were also studied. These conductive yarns are expected to be used as fibrous sensors, connection devices in smart clothing, and for electromagnetic shielding applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1252–1256, 2006  相似文献   

15.
16.
17.
In this study, two‐component free‐standing films were obtained by coating a polycarbonate (PC)‐coated Pt electrode first with polypyrrole (PPy) in an organic medium and then polyaniline (PAn) in an aqueous medium using an electrochemical technique. The amount of PPy and PAn contained in the films was controlled by varying the electrolysis time. The PC/PPy/PAn films were characterized by cyclic voltammetry, conductivity, FTIR and UV–visible spectrophotometry, and thermogravimetric analysis. The resistance change of the films was determined in the temperature range of ?15 to 120 °C and their temperature sensor properties were investigated. © 2002 Society of Chemical Industry  相似文献   

18.
结构型导电高分子纳米粒子制备的研究进展   总被引:3,自引:0,他引:3  
根据结构型导电高分子材料和纳米材料的发展趋势,介绍了结构型导电高分子材料的概念、分类及导电和掺杂机理,综述了近年来国内外科研工作者对导电高分子纳米粒子制备方法的研究进展状况,最后指出了纳米粒子研究中需要解决的问题。  相似文献   

19.
Polyaniline/nano‐SiO2 particle composites were prepared through ultrasonic irradiation. Polymerization of aniline was conducted under ultrasonic irradiation in the presence of two types of nano‐SiO2: porous nanosilica and spherical nanosilica. The stability of the colloid dispersion, UV–vis spectra, composition, interaction, conductivity, and other characteristics of the composites were examined. It was found that the aggregation of nano‐SiO2 could be reduced under ultrasonic irradiation and that nanoparticles were redispersed in the aqueous solution. The formed polyaniline deposited on the surface of the nanoparticle, which led to a core–shell structure. Two particle morphologies, threadlike aggregates with a few spherical nanoparticles for porous nanosilica and spherical particles with a few sandwichlike particles for spherical nanosilica, were observed. X‐ray photoelectron spectroscopy showed that for two types of composites the ratio of Si atoms to N atoms (Si:N) on the surface was much higher than that in the bulk. The UV–vis spectra of the diluted colloid dispersion of polyaniline/nano‐SiO2 composite particles were similar to those of the polyaniline system. Fourier transform infrared spectroscopy suggested strong interaction between polyaniline and nano‐SiO2. The conductivity of the polyaniline/porous nanosilica (23.1 wt % polyaniline) and polyaniline/spherical nanosilica (20.6 wt % polyaniline) composites was 2.9 and 0.2 S/cm, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1811–1817, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号