首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional synthesis of inorganic materials relies heavily on water and organic solvents. Alternatively, the synthesis of inorganic materials using, or in the presence of, ionic liquids represents a burgeoning direction in materials chemistry. Use of ionic liquids in solvent extraction and organic catalysis has been extensively studied, but their use in inorganic synthesis has just begun. Ionic liquids are a family of non‐conventional molten salts that can act as templates and precursors to inorganic materials, as well as solvents. They offer many advantages, such as negligible vapor pressures, wide liquidus ranges, good thermal stability, tunable solubility for both organic and inorganic molecules, and much synthetic flexibility. In this Review, the use of ionic liquids in the preparation of several categories of inorganic and hybrid materials (i.e., metal structures, non‐metal elements, silicas, organosilicas, metal oxides, metal chalcogenides, metal salts, open‐framework structures, ionic liquid‐functionalized materials, and supported ionic liquids) is summarized. The status quo of the research field is assessed, and some future perspectives are furnished.  相似文献   

2.
以离子液体为反应介质制备纤维素衍生物的研究进展   总被引:1,自引:0,他引:1  
由于离子液体对于纤维素具有很好的溶解性能,以及离子液体本身所具有的热稳定性好、蒸气压低、不燃烧等优良性质,近几年以离子液体为溶剂制备纤维素衍生物的研究受到了越来越多的重视。综述了近期以离子液体为溶剂制备纤维素衍生物的研究进展,包括在离子液体中制备纤维素醋酸酯、琥珀酸纤维素、羧甲基纤维素等衍生化反应的特点,以及与传统制备方法的优劣对比等内容。  相似文献   

3.
用 N-甲基咪唑和氯代正辛烷为原料,首先合成出中间体[Omim]Cl,然后与几种典型的金属氯化物按不同的物质的量比合成出了一系列的离子液体,采用红外光谱对其进行表征,并考察了离子液体对正辛烷中二苯并噻吩的萃取脱除效果。对几种不同的离子液体的脱硫性能进行了初步比较,并针对[Omim]Cl·2FeCl3离子液体详尽考察了剂油体积比、萃取时间、萃取温度、硫化物的种类、重复利用次数等因素对脱硫率的影响。结果表明,萃取温度为25℃,萃取时间为20 min,剂油体积比为1∶20时,[Omim]Cl·2FeCl3对 DBT 的脱除率高达99.20%,并且对4种不同含硫组分的脱除能力:DBT>BT>T>3-MT。且离子液体再重复使用5次后,对 DBT 的脱除率还能够达到89.56%,离子液体经回收之后,对 DBT 的脱除率没有明显的下降,表明再生效果良好。实验数据对咪唑离子液体的萃取脱硫性能研究和反应条件的优选提供了重要信息。  相似文献   

4.
气凝胶具有三维纳米多孔网络结构,独特的结构使它具有低密度、高比表面积和高孔隙率等性质以及低热导率、低介电常数和低声传播速率等性能,在隔热、介电、隔声、催化、吸附等领域具有广阔的应用前景.然而,溶剂-凝胶法作为目前制备气凝胶最成熟、应用最广的技术,需要使用大量的有机溶剂,严苛而危险的超临界干燥工艺进一步推高了成本,限制了气凝胶的大规模工业化生产和应用,因此,降低成本和在常压干燥条件下制备高比表面积的块状气凝胶是气凝胶产业急需解决的问题.离子液体被称为21世纪的绿色溶剂,具有低蒸气压、低表面张力、高催化性和高溶解性等特殊性质.离子液体与气凝胶材料的发展几乎同步,但直到2000年两种材料才产生交集.离子液体作为模板剂具有微观结构导向作用,使纳米孔结构均一化,其不挥发性和低表面张力保证了老化和常压干燥过程中纳米孔结构不会因毛细管力而坍塌破坏,另外其催化作用可以缩短凝胶时间.因此,离子液体为常压干燥合成气凝胶提供了新的工艺路线.目前,有关借助离子液体制备 SiO2气凝胶、TiO2气凝胶、SiO2-TiO2复合气凝胶、炭气凝胶等无机气凝胶的探索均已展开,其中制备 SiO2气凝胶的研究最多,涉及工艺、微观结构、掺杂和应用等方面.通过常压干燥可获得比表面积高达677 m2/g 的块状气凝胶,通过选用不同的离子液体还可以控制纳米孔的微观形貌,所得 SiO2气凝胶产物在电化学、生物、吸附等领域有较高的应用潜力.利用离子液体替代有机溶剂可以使得到的TiO2气凝胶不经煅烧即含有锐钛矿相,通过金属原子 Ag、Fe、Ge等掺杂改性,可进一步提高锐钛矿相的结晶度,提升其光催化性能.利用离子液体制得的 SiO2-TiO2复合气凝胶具有一定强度和良好的光催化活性.此外,除在传统的溶胶-凝胶法中用作模板剂或催化剂外,离子液体还可作为新型的炭源用于制备炭气凝胶,即通过熔盐法高温炭化裂解离子液体"自上而下"直接制备.这种方法可以制备杂原子在原子水平上均匀分布的功能化炭气凝胶,无需制备有机气凝胶前驱物,极大缩短制备周期,并且炭气凝胶产物的比表面积相对更高,得到了科研界的广泛关注.  相似文献   

5.
磁性离子液体是一种新型的功能化离子液体材料,具有优良的热稳定性、优异的电化学性能、良好的溶解性能以及可回收性等特性,使其在萃取分离、反应催化和复合材料等领域具有较好的应用前景。对目前合成的磁性离子液体做了概述并根据构效关系对主要的磁性离子液体进行了分类。综述了磁性离子液体的主要制备方法,主要有一步合成法、二步合成法和辅助合成法。介绍了磁性离子液体在萃取分离、反应催化及碳纳米管复合材料领域应用研究进展。最后根据磁性离子液体在合成和应用中的不足做了展望。  相似文献   

6.
We demonstrate refractive index measurement of liquids using two sensor system designs, both based on microring resonators. Evanescent sensors based on microrings utilize the resonating nature of the light to dramatically decrease the required size and sample consumption volume, which are requirements of lab-on-a-chip sensor systems. The first design, which utilizes an optical microsphere, exhibits a sensitivity of 30 nm/RIU and a resulting detection limit on the order of 10-7 RIU. The second approach is a novel design called a liquid core optical ring resonator (LCORR). This concept uses a quartz capillary as the fluidics and as the ring resonator and achieves a sensitivity of 16.1 nm/RIU. The detection limit of this system is around 5times10-6 RIU. Both of these systems have the potential to be incorporated with advanced microfluidic systems for lab-on-a-chip applications. In particular, the LCORR combines high sensitivity, performance stability, and microfluidic compatibility, making it an excellent choice for lab-on-a-chip development  相似文献   

7.
The future of lab-on-a-chip devices for the synthesis of nanomaterials hinges on the successful development of high-throughput methods with better control over their size. While significant effort in this direction mainly focuses on developing "difficult to fabricate" complex microfluidic reactors, scant attention has been paid to the "easy to fabricate" and simple millifluidic systems that could provide the required control as well as high throughput. By utilizing numerical simulation of fluids within the millifluidic space at different flow rates, the results presented here show velocity profiles and residence time distributions similar to the case of microfluidics. By significantly reducing the residence time and residence time distribution, a continuous flow synthesis of ultrasmall copper nanoclusters (UCNCs) with exceptional colloidal stability is achieved. In-situ synchrotron-radiation-based X-ray absorption spectroscopy (XAS) reveal that the as-prepared clusters are about 1 nm, which is further supported by transmission electron microscopy and UV-vis spectroscopy studies. The clusters reported here are the smallest ever produced using a lab-on-a-chip platform. When supported on silica, they are found to efficiently catalyze C-H oxidation reactions, hitherto unknown to be catalyzed by Cu. This work suggests that a millifluidic platform can be an inexpensive, versatile, easy-to-use, and powerful tool for nanoparticle synthesis in general, and more specifically for ultrasmall nanoclusters (UNCs).  相似文献   

8.
离子液体作为一种"绿色溶剂",具有很多独特的物理化学性能,可以应用于自由基聚合、阳离子聚合、配位聚合、电化学聚合等反应体系。本文阐述了离子液体的特点及合成方法,介绍了离子液体在高分子合成中的应用。  相似文献   

9.
卞洁鹏  杨庆浩 《材料导报》2018,32(11):1813-1819
综述了离子液体的种类、合成及纯化方法。离子液体的纯度对其物理化学性质至关重要,是研究其应用的首要问题。本文介绍了离子液体的合成方法,并对比了其优缺点,发现合成方法对离子液体的纯度起着关键作用,指出了影响离子液体纯度的因素,分析对比了离子液体的纯化方法,包括真空干燥、有机溶剂萃取、重结晶、吸附剂法、分子筛法等,根据影响因素种类的不同,优选纯化方法,并对离子液体的发展进行了展望。  相似文献   

10.
Room-temperature ionic liquids are a class of non-molecular ionic solvents with low melting points. Their properties have the potential to be especially useful as stationary phases in gas-liquid chromatography (GLC). A series of common ionic liquids were evaluated as GLC stationary phases. It was found that many of these ionic liquids suffer from low thermal stability and possess unfavorable retention behavior for some classes of molecules. Two new ionic liquids were engineered and synthesized to overcome these drawbacks. The two new ionic liquids (1-benzyl-3-methylimidazolium trifluoromethanesulfonate and 1-(4-methoxyphenyl)-3-methylimidazolium trifluoromethanesulfonate) are based on "bulky" imidazolium cations with trifluoromethanesulfonate anions. Their solvation characteristics were evaluated using the Abraham solvation parameter model and correlations made between the structure of the cation and the degree to which the ionic liquids retain certain analytes. The new ionic liquids have good thermal stability up to 260 degrees C, provide symmetrical peak shapes, and because of their broad range of solvation-type interactions, exhibit dual-nature selectivity behavior. In addition, the ionic liquid stationary phases provided different retention behavior for many analytes compared to a commercial methylphenyl polysiloxane GLC stationary phase. This difference in selectivity is due to the unique solvation characteristics of the ionic liquids and makes them very useful as dualnature GLC stationary phases.  相似文献   

11.
A continuous flow micro total analysis system (micro-TAS) consisting of an on-chip microfluidic device connected to a matrix assisted laser desorption ionization [MALDI] time-of-flight [TOF] mass spectrometer (MS) as an analytical screening system is presented. Reaction microchannels and inlet/outlet reservoirs were fabricated by powderblasting on glass wafers that were then bonded to silicon substrates. The novel lab-on-a-chip was realized by integrating the microdevice with a MALDI-TOFMS standard sample plate used as carrier to get the microfluidic device in the MALDI instrument. A novel pressure-driven pumping mechanism using the vacuum of the instrument as a driving force induces flow in the reaction microchannel in a self-activating way. Organic syntheses as well as biochemical reactions are carried out entirely inside the MALDI-MS ionization vacuum chamber and analyzed on-line by MALDI-TOFMS in real time. The effectiveness of the micro-TAS system has been successfully demonstrated with several examples of (bio)chemical reactions.  相似文献   

12.
Water or aqueous electrolytes are the dominant components in electrowetting on dielectric (EWOD)-based microfluidic devices. Low thermal stability, evaporation, and a propensity to facilitate corrosion of the metal parts of integrated circuits or electronics are drawbacks of aqueous solutions. The alternative use of ionic liquids (ILs) as electrowetting agents in EWOD-based applications or devices could overcome these limitations. Efficient EWOD devices could be developed using task-specific ILs. In this regard, a fundamental study on the electrowetting properties of ILs is essential. Therefore electrowetting properties of 19 different ionic liquids, including mono-, di-, and tricationic, plus mono- and dianionic ILs were examined. All tested ILs showed electrowetting of various magnitudes on an amorphous flouropolymer layer. The effects of IL structure, functionality, and charge density on the electrowetting properties were studied. The enhanced stability of ILs in electrowetting on dielectric at higher voltages was studied in comparison with water. Deviations from classical electrowetting theory were confirmed. The physical properties of ILs and their electrowetting properties were tabulated. These data can be used as references to engineer task-specific electrowetting agents (ILs) for future electrowetting-based applications.  相似文献   

13.
离子液体作为新颖的"软"功能材料已成为目前研究的新热点。折射率的研究对了解离子液体这种新型光学材料的结构性质具有重要意义。对选取的系列离子液体{[Cnmim]BF4(n=6,8,10,12),[Cnmim]PF6(n=8,10,12),[Cnmim]I(n=7,8,10),[Cnmim]Cl(n=10,12,14),[CnPy]BF4(n=9,11,13)等}在空气中的折射率进行了测试和理论分析,结果表明,(1)若阴离子为BF4-和PF6-,离子液体的折射率随阳离子侧链的增长而线性增加;若阴离子为Cl-和I-,离子液体的折射率随离子液体阳离子侧链的增长而线性减小,相关系数R分别是0.98854、0.98004、0.99942、-0.97888、-0.9793;(2)当阳离子一定时,阴离子体积越大,折射率越小,单元素阴离子比多元素阴离子的离子液体折射率要大;(3)离子液体的折射率随温度升高而减小,卤盐离子液体与四氟硼酸盐和六氟磷酸盐离子液体相比对温度变化更敏感。  相似文献   

14.
Metal nanoparticles were successfully synthesized from the self-regulated reduction of hydroxylated ionic liquids in aqueous phase without additives. A new water-phase synthesis of gold and palladium nanoparticles using N-(2-hydroxyethyl)-N-methylmorpholinium tetrafluoroborate is described. Transmission electron microscopy was performed to characterize the metal nanoparticles. The average sizes of the gold and palladium nanoparticles were 4.3 nm and 3.2 nm, respectively. Hydroxylated ionic liquids served as both reductants and protective agents, significantly simplifying the preparation of nanoparticles. The produced particles were highly crystalline in structure with a face-centered cubic (fcc) lattice. Finally, we showed preliminary results that suggest different hydroxylated ionic liquids can also be used to prepare various metal nanoparticles.  相似文献   

15.
Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.  相似文献   

16.
Discrimination and analysis of phytoplankton using a microfluidic cytometer   总被引:1,自引:0,他引:1  
Identification and analysis of phytoplankton is important for understanding the environmental parameters that are influenced by the oceans, including pollution and climate change. Phytoplanktons are studied at the single cell level using conventional light-field and fluorescence microscopy, but the technique is labour intensive. Flow cytometry enables rapid and quantitative measurements of single cells and is now used as an analytical tool in phytoplankton analysis. However, it has a number of drawbacks, including high cost and portability. We describe the fabrication of a microfluidic (lab-on-a-chip) device for high-speed analysis of single phytoplankton. The device measures fluorescence (at three wavelength ranges) and the electrical impedance of single particles. The system was tested using a mixture of three algae (Isochrysis Galbana, Rhodosorus m., Synechococcus sp.) and the results compared with predictions from theory and measurements using a commercial flow cytometer (BD FACSAria). It is shown that the microfluidic flow cytometer is able to distinguish and characterise these different taxa and that impedance spectroscopy enables measurement of phytoplankton biophysical properties.  相似文献   

17.
A novel array-pattern ring microfluidic chip has been designed and fabricated with ITO glass, and a low-cost, easy-to-use active magnetic mixer is developed. The mixer consists of externally driven magnetic stir plates and ferromagnetic microneedles as active mobile stirrers in the microchannel. Mixing performance in the microfluidic chip has been experimentally characterized by chemiluminescence immunoassay of human thyrotropin (TSH) and compared with tube-based chemiluminescence immunoassay. The mixing method proposed in this study can be readily applied to integrated microfluidic systems, such as micro-total-analysis systems, lab-on-a-chip, and so on.  相似文献   

18.
Nanohybrids composed of two or more components exhibit many distinct physicochemical properties and hold great promise for applications in optics, electronics, magnetics, new energy, environment protection, and biomedical engineering. Microfluidic systems exhibit many advantages due to their unique characteristics of narrow channels, variable length, controllable number of channels and multiple integrations. Particularly their spatial‐temporarily splitting of the formation stages during nanomaterials formation along the microfluidic channels favors the online control of the reaction kinetic parameters and in situ tuning of the product properties. This Review is focused on the features of the current types of microfluidic devices in the synthesis of different types of nanohybrids based on the classification of the four main kinds of materials: metal, nonmetal inorganic, polymer and composites. Their morphologies, compositions and properties can be adjusted conveniently in these synthesis systems. Synthesis advantages of varieties of microfluidic devices for specific nanohybrids of defined surfaces and interfaces are presented according to their process and microstructure features of devices as compared with conventional methods. A summary is presented, and challenges are put forward for the future development of the microfluidic synthesis of nanohybrids for advanced applications.  相似文献   

19.
Room-temperature ionic liquids are useful as solvents for organic synthesis, electrochemical studies, and separations. We wished to examine whether their high solubalizing power, negligible vapor pressure, and broad liquid temperature range are advantageous if they are used as matrixes for UV-MALDI. Several different ionic matrixes were synthesized and tested, using peptides, proteins, and poly(ethylene glycol) (PEG-2000). All ionic liquids tested have excellent solubilizing properties and vacuum stability compared to other commonly used liquid and solid matrixes. However, they varied widely in their ability to produce analyte gas-phase ions. Certain ionic matrixes, however, produce homogeneous solutions of greater vacuum stability, higher ion peak intensity, and equivalent or lower detection limits than currently used solid matrixes. Clearly, ionic liquids and their more amorphous solid analogues merit further investigation as MALDI matrixes.  相似文献   

20.
The advantages of integrating microfluidics into photonics-based biosensing for fabricating microreactor type lab-on-a-chip devices carries a lot of advantages, such as smaller sample volume handling, controlled drug delivery and high throughput diagnosis, which is useful for in situ medical diagnosis and point-of-care (POC) testing. A hybrid integrated optical microfluidic system has been developed for the study of single molecules and enzymatic reactions. The method of optical absorption has been employed for biosensing and the feasibility of absorption-based detection on the microfluidic platform has been demonstrated using horseradish peroxidase and hydrogen peroxide, as an example. The results show that the device is useful for the analysis of both the individual chemical specimen and also the study of chemical and biological reaction between two reacting species. The hybrid integration of microfluidics and optical ensembles thus forms the basis for developing the microreactor type lab-on-a-chip device, which would have several important applications in the area of nanobiotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号