共查询到19条相似文献,搜索用时 78 毫秒
1.
针对传统的聚类算法需要知道类的真实数目,以及容易陷入局部最优的缺陷,提出基于群进化策略的模糊聚类算法,简称fuzzyGAC。该算法将群进化策略与模糊聚类结合起来,通过两个阶段(继承阶段和重新分配阶段)来产生新的聚类结果。将提出的算法与模糊C均值算法、差分算法、粒子群算法进行比较,实验结果表明,就类的数目和聚类中心而言,该算法可以自适应地修正类的数目并且提供最优的聚类中心。 相似文献
2.
为了在服务组合演化过程中高效地选择满足服务请求的Web服务,提出了一种基于混合协同进化算法的Web服务组合演化策略。首先,利用改进模糊C均值聚类算法将Web服务演化单元按应用分类;然后,利用带权值的粒子群算法对划分好的子群进行内部择优;最后,对各个子群进行协同进化,使得针对用户服务请求,能够选出最优Web服务演化组合。实验结果表明,混合协同进化算法无论在算法稳定性或是算法运算时间上都优于传统协同进化算法,且对于Web环境下大量的服务请求能够提供优质、高效的服务。 相似文献
3.
煤矿视频监控技术是煤矿开采安全生产的重要组成部分,而监控图像的质量直接决定监控识别结果的有效性。为解决煤矿井下视频图像模糊、对比度低、细节不够清晰等问题,增强图像目标分割效果,对传统教学算法进行改进,提出了一种混合改进教学算法,并将其与人工鱼群算法融合,形成一种基于混合改进教学算法的人工鱼群算法(ITLBO-AFSA)。通过调整学习策略、优化算法参数,对传统人工鱼算法进行改进,并将经该算法图像增强后的结果用于模糊C均值算法(FCM)图像分割。实验结果表明,ITLBO-AFSA与标准FCM算法分割、AFSA_FCM算法相比,划分系数分别提升了7%,3%左右;划分熵值各下降了57%,10%左右;图像分割正确率分别提升了10%,7%;与标准FCM算法和AFSA_FCM算法相比,ITLBO-AFSA取得最优结果所用迭代次数最少,收敛速度最快,聚类效果最好,可以有效避免陷入局部最大化。 相似文献
4.
针对模糊聚类存在的数据收缩问题的不足,提出了一种改进现有模糊聚类算法的方法,并进行仿真实验研究.模糊C-均值(FCM)算法主要通过目标函数的迭代优化来实现集合划分,以信息熵作为模糊C-均值算法的约束条件,给出改进算法的推导过程,得出改进后的模糊C-均值算法的隶属度和聚类中心,实现了模糊C-均值的改进算法.实验结果可以表明,改进的模糊C-均值算法是有效的,能够表现出比模糊C-均值算法更好的性能,在实际应用中可以取得较好的聚类效果. 相似文献
5.
针对FCM原型算法的不足,提出一种新的改进方法,并进行仿真实验研究。利用主成分分析方法对原始数据集的指标进行筛选,应用Relief算法对入选指标计算权重。在此基础上,对FCM算法进行了改进。应用模糊划分系数Fc(R)和平均模糊熵Hc(R)这两个指标对算法的性能进行了评价。仿真实验结果表明,改进后的FCM算法对样本集数据的分类符合率达到了91.5%,其模糊划分系数Fc(R)和平均模糊熵Hc(R)分别为0.924和-0.062。改进后的FCM算法分类性能优于FCM原型算法,在应用中可以取得更好的效果。 相似文献
6.
传统的FCM(fuzzy c-means)算法可以准确的分割多数无噪声图像,但对噪声图像非常敏感.针对于此类问题,提出了一种基于形态学重建的改进FCM算法.首先利用形态学闭合重建算子对含噪图像进行光滑化.然后利用基于邻域信息的改进FCM算法对合成图像及医学图像进行分割处理,最终得出了更加精确的分割结果.通过与其它两类算... 相似文献
7.
8.
针对传统FCM(Fuzzy C-means)算法中初始聚类中心选取的随机性以及对初始值敏感的问题,提出一种基于进化策略的色彩空间加权的FCM聚类算法.通过在RGB(Red Green Blue)色彩空间矢量中设置加权矩阵来补偿各色彩的非均匀性,并采用一种类内最小距离最大的统计聚类算法来初始化聚类中心.实验结果表明,该算法能有效减少颜色量化后的均方差值,保持重建图像的整体层次和局部特征细节,对研究图像处理技术有较强的实际意义.Abstract: Aiming at a defect on randomness of the initial clustering center choosing and sensitivity of initial value in tradition FCM(fuzzy C-means) algorithm, a clustering algorithm about FCM of weighted color space based on evolutionary strategy is proposed. By interposing weighted matrix in RGB(Red Green Blue) color space, the color's inhomogeneous is compensated. And by using a statistics clustering algorithm of minimal maximal distance, clustering center is initiated. The experimental results show that the algorithm can decrease effectively the mean square deviation of color quantization, keep overall arrangement of ideas and part characteristic detail in image reconstruction, and has practical value to the study of the image process technology. 相似文献
9.
10.
11.
FCM算法是目前广泛使用的算法之一。,针对FCM聚类质量和收敛速度依赖于初始聚类中心的问题,结合Canopy聚类算法能够粗略快速地对数据集进行聚类的优点,提出了一种基于Canopy聚类的FCM算法。该算法通过将Canopy算法快速获取到的聚类中心作为FCM算法的输入来加快FCM算法收敛速度。并在云环境下设计了其MapReduce化方案,实验结果表明,MapReduce化的基于Canopy聚类的FCM算法比MapReduce化的FCM聚类算法具有更好的聚类质量和运行速度。 相似文献
12.
基于混沌差分进化FCM算法的舵回路故障诊断 总被引:1,自引:0,他引:1
为了提高故障分类的准确性,提出了一种混沌差分进化模糊C-均值故障识别方法(CDEFCM,chaotic differential evolution fuzzy C-mean).该方法利用差分进化算法高效的全局搜索能力以及混沌序列的均匀遍历特性,克服了模糊C-均值算法(FCM,fuzzy C-mean)对初始值敏感的缺点及遗传算法易收敛到局部极值点的缺陷,用该方法进行故障聚类分析,可以准确地识别故障.以某飞控系统舵回路常见故障为例进行了仿真验证,结果表明该方法能有效地识别出故障. 相似文献
13.
14.
采用K-means算法和FCM算法实现对47个城市竞争力的聚类分析,选择较为简便的聚类有效性函数用于聚类结果的检验,得到了两种有效的聚类算法的实现方式,并验证该方法的合理性. 相似文献
15.
16.
传统的奖学金评定方法是按照学生总成绩的高低作为评定依据.把一个多因数的问题简单化,使它成为一个单一的问题来处理.这种方法显然不合理.针对这个问题.采用基于模糊划分的模糊C-均值方法.对学生进行奖学金评定.为评审人员提供了一种比较科学、公正的评审方法. 相似文献
17.
18.
19.
FCM算法对初始聚类中心敏感,对噪声和孤立点敏感,容易受到数据分布的影响。本文的改进算法引入物理学上的数据场理论,用势函数来描述数据的分布,优化初始聚类中心;同时采用冗余聚类中心的方法,即将大簇分割成多个小类,再用分离度作为评估函数进行类合并。仿真实验结果表明,改进算法能够克服FCM算法的一些缺陷,对数据分布不规则的数据集进行有效聚类,聚类效果良好。 相似文献