首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
详细介绍了Si3N4/SiCp复相陶瓷的研究现状,着重论述了Si3N4/SiCp纳米复相陶瓷的制备工艺及发展趋势。  相似文献   

2.
Si3N4/SiCp复相陶瓷研究现状及进展   总被引:1,自引:0,他引:1  
张伟儒 《河北陶瓷》1995,23(3):21-24
详细介绍了SiN4/SiCp复相陶瓷的研究现状,着重论述了Si3N4/SiCp纳米复相陶瓷的制备工艺及发展趋势。  相似文献   

3.
给制了Si-C-O-N系统平衡状态下相稳定性与N2分压和O2分压以及相稳定性与N2分压和SiO分压的关系图;以此为指导,将原位复合引入到反应烧结锆莫来石(ZAS)材料中,制备了含原位(in-situ)SiC(p)的ZrO2SiC(p)、ZrO2-3Al2O3·ZSiO2-SiC(p)-SiC(p)复合材料。研究了烧结温度、时间、碳添加量、成型压力等工艺因素对烧结ZrSiO4-C体系中原位SiC生成量的影响,并观察了试样的显微结构。  相似文献   

4.
采用氧化后再氧化的实验方法,通过对 Si3 N4 陶瓷材料氧化行为的研究和氧化动力学的分析,讨论了 Si3 N4 陶瓷材料的氧化机理。结果表明, Si3 N4 陶瓷材料的氧化行为表现为氧化增量随时间的变化服从抛物线规律:(Δ W )2 = Kp t 。提出了氧在氧化层中的向内扩散是 Si3 N4 氧化过程中的控制步骤;并认为烧结添加剂或杂质等对 Si3 N4 陶瓷材料氧化速度的影响,是通过改变氧化层的组成、结构,使氧在氧化层中的扩散速度发生变化而产生的。  相似文献   

5.
用有机前驱体制备Si3N4/纳米SiC复相陶瓷的研究   总被引:1,自引:0,他引:1  
本研究成功地用有机前驱体引入纳米SiC粒子制备出Si3N4/纳米SiCp复相陶瓷。研究了制备工艺和有机前驱体加入量对材料性能及显著结构的影响,并对材料显微结构特点与强韧化机制进行了分析讨论。  相似文献   

6.
Si3N4/纳米SiC复相陶瓷的研究   总被引:10,自引:0,他引:10  
采用纳米SiC粉体制备了Si3N4/纳米SiCp复相陶瓷。研究了制备工艺、纳米SiC含量对材料性能及显微结构的影响,并对材料显微结构特点与强韧化机制进行了分析 。结果表明:添加20vo%〈100nm的SiC粉体时,复相陶瓷的室温抗弯强度达856MPa,当添加10vo%上述SiC粉体时,复相陶瓷的增韧效果最佳,断裂韧性达8.27MPam^1/2,比基体材料提高了23%。  相似文献   

7.
β-Si3N4及添加β-Si3N4的α-Si3N4的气氛加压烧结   总被引:1,自引:0,他引:1  
介绍了β-Si3N4及添加β-Si3N4的α-Si3N4的气氛加压烧结,β-Si3N4在GPS中具有低于α-Si3N4的烧结活性而且陶瓷显微结构更容易调节,由GPSβ-Si3N4制备的陶瓷材料晶粒比较均匀,具有较高的力学性能,尤其是高的韦泊模数,添加于α-Si3N4中的β-Si3N4对陶瓷材料显微结构具有明显的调控作用。  相似文献   

8.
采用有机前驱体制备Si3N4/SiC纳米复相陶瓷   总被引:9,自引:0,他引:9  
顾培芷  樊启晟 《硅酸盐学报》1995,23(3):266-271,285
本研究采用有机前驱体为主要原料,通过热解及烧结制备了两类Si3N4/SiC纳米复相陶瓷,研究了这些材料的微结构特点,讨论了材料强化的机制及力学性能与显微结构的关系。  相似文献   

9.
对Si-C-O-N系统进行了平衡状态下的相稳定性计算,绘制了在1473K和1573K下的Si3N4、SiC、Si2N2O和SiO2相稳定性与N2分压和O2分压的关系图以及N2分压和SiO分区的关系图,Si3N4/Si2N2O/SiC、SiO2/Si2N2O/SiC两个三固相平衡点与N2分压、O2分压和SiO分压以及温度的函数关系日。并以此确定C纤维-SiC纤维转变和C纤维上涂层SiC过程中,为获得稳定SiC相的气体分压。  相似文献   

10.
采用GPS烧结HIP处理两步烧结Si3N4基复合陶瓷材料,在GPS烧结后使试件表面气孔闭合形成自身包套,而后通过HIP处理可以明显提高烧结体的密度,可以获得抗弯强度〉720MPa,断裂韧性KIC〉7.8MPa.m^1/2的高性能Si3N4基复合陶瓷烧结体。而GPS烧结所获得的由β-Si3N4晶粒组成的网状显微结构对烧结体的性能是十分有益的.  相似文献   

11.
N+注入Ti/Si3N4的摩擦行为研究   总被引:1,自引:0,他引:1  
研究了Si3N4陶瓷材料及镀膜Ti/Si3N4材料当N^+注入前后的摩擦学行为,考察了样品表面划痕轨迹的SEM形貌,结合X射线衍射,对离子注入改性机理和摩擦学性能刊物了探讨,在Ti和Si3N4界面上离子的混合及形成Ti2N相使Ti膜的附着力增加。  相似文献   

12.
孙菊 《耐火与石灰》1999,24(8):52-55
铝冶炼工业中作为助熔剂的熔融冰晶石强烈地侵蚀着多数陶瓷制品。这篇文章叙述承还原条件下1000℃保温48小时,熔融冰晶石在同陶瓷制品、BN、SiC、Si3N4结合SiC、Si3N4/SiC复合材料和两种Ti-Al-O-N复合材料的反应试验。BN和SiC获得了最好的抗侵蚀性。同Si3N4结合SiC的反应由于开气孔的渗透作用而导致粒边界玻璃相的侵蚀。在SiC增强Si3N4材料中,仅有玻璃相被侵蚀。一种T  相似文献   

13.
原位燃烧合成Si3N4/Ti(C,N)/SiC复相陶瓷热力学分析   总被引:3,自引:0,他引:3  
研究了用TiC作添加剂时Si粉坯在高压氮气中的燃烧行为,结果表明:TiC加入量对燃烧合成产物的相组成有重要影响,原因在于TiC加入量直接影响燃烧过程中氮气向反应前沿的渗透性,从而影响试样中不同部位氮气分压的变化,适当调整工艺参数,可以合成Si3N4/Ti(C,N)/SiC复相陶瓷,并从热力学角度对实验结果进行了合理的解释。  相似文献   

14.
SiC—Al2O3基复相陶瓷的N2—HIP研究   总被引:3,自引:0,他引:3  
通过对热压SiC-Al2O3复合材料进行了N2-HIP后处理,制备得到Si3N4-AlN=SiC-Al2O3梯度材料,经N2-HIP处理后,材料抗弯强度提高35%-95%,并得到经强度达1030MPa的SieN4-AlN/SiCp-SiCW-Al2O3复合材料。  相似文献   

15.
氮化硅结合碳化硅材料反应烧结时的杂质相行为分析   总被引:4,自引:0,他引:4  
郝小勇 《陶瓷工程》1998,32(3):24-26
分析了Si3N4结合SiC材料反应烧结时Fe2O3,SiO2,Al2O3,CaO等杂质相的反应行为。  相似文献   

16.
Si3N4陶瓷材料的氧化行为及其抗氧化研究   总被引:8,自引:0,他引:8  
张其土 《陶瓷学报》2000,21(1):23-27
研究了Si3N4陶瓷材料的氧化行为,同时探讨了通过表面处理使Si3N4陶瓷材料表面形成一层Si2N2O对其抗氧化性能的影响。实验结果表明,Si3N4陶瓷材料在空气中的氧化行为服从抛物线规律。另外,用X射线衍射分析(XRD)和X光电子能谱(XPS)分析验证了Si2N2O层的存在。由于形成了Si2N2O层,Si3N4陶瓷材 在1300℃下氧化100h后,氧化增重从原来的0.42mg/cm^2降低到0.2  相似文献   

17.
本文研究了GPSZrO2-Si3N4复合材料的烧结性能、相组成、显微结构和力学性能。ZrO2-Si3N4复合材料在1770~1800℃,氮气压力分别为1MPa,2MPa,3MPa下烧成,获得相对密度>95%烧结体。实验结果表明:少量的工业ZrO2对氮化硅有助烧作用,增大氮气压力有利于改善氮化硅陶瓷材料的烧结性能和力学性能;ZrO2可提高氮化硅基体的断裂韧性,在3MPa下烧成条件下,添加15%ZrO2的Si3N4复合材料断裂韧性可达8.08MPa.m1/2,与基体相比提高21.5%,第二相粒子增韧和微裂纹增韧为主要增韧机理。  相似文献   

18.
陈远志  梁勇 《中国陶瓷》1999,35(2):34-36,39
本文综述了Si3N4/SiC纳米复相陶瓷的研究进展,较详细地介绍了纳米粉体的制备工艺及热处理研究、复相陶瓷的制备工艺、力学性能、微观结构及增韧强化机理。  相似文献   

19.
利用EPMA和XRD的分析方法,研究了Si_3N_4-Al_2O_3-ZrO_2系陶瓷材料表面氧化层组成。结果表明,Si_3N_4-Al_2O_3-ZrO_2系陶瓷材料表面氧化层是由方石英相、ZrSiO_4相和含有Al_2O_3、CaO等的SiO_2玻璃相所组成,其中SiO_2玻璃相中Al_2O_3、CaO等的含量,随着氧化时间的增加而逐渐增加。  相似文献   

20.
几类典型结构陶瓷材料的冲蚀磨损行为研究   总被引:2,自引:0,他引:2  
研究了几类典型结构陶瓷材料,如Al2O3,SiC,Si3N4陶瓷,Al2O3-ZrO2系相变增韧陶瓷(ZTA,TZP)和SiCw/Si3N4系晶须补强陶瓷(WRSN)有90m/s下的冲蚀磨损性能,以及其与材料性能(硬度,断裂韧性)和冲蚀条件(粒子硬度,冲击角度)之间的关系,分析了冲蚀磨损机制。陶瓷材料的低角冲蚀磨损机制主要包括:研磨状损伤,犁沟状微切削损伤和晶粒剥落。低角冲蚀磨损率随材料硬度的增加  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号