首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports on changes in the major and minor components of virgin olive oil during oxidation, details modifications found in the standardized quality indices, and analyzes the most significant relationships between the components of the oil and its oxidative stability. During the induction period or slow phase of oxidation, polyphenols, tocopherols, and pigments undergo the most important alterations. Other compounds, such as FA or volatiles, suffer significant modifications only during the rapid or exponential phase of oxidation when the natural antioxidant systems fall to minimal values. Among the quality indices, PV and the specific extinction coefficients K 232 and K 270 increase markedly from the earliest stages of oxidation, whereas titratable acidity does not change appreciably during the induction period. The evolution of the different compounds and parameters analyzed suggests that the tocopherol and orthodiphenol contents are the best indices to determine the average life of the oils.  相似文献   

2.
Research has been carried out to ascertai the effects of different processing systems on olive oil quality. Tests were performed in industrial oil mills that were equipped with both pressure and centrifugation systems. Results show that oils extracted from good-quality olives do not differ in free fatty acids, peroxide value, ultraviolet absorption and organoleptic properties. Polyphenols ando-diphenols contents and induction times are higher in oils obtained from good-quality olives by the pressure system because it does not require addition of water to the olive paste. The centrifugation system requires the addition of warm water to the olive paste and helps to obtain oils with a lower content of natural antioxidants. Oils obtained from poorquality or from ripe olives in continuous centrifugal plants are lower in free fatty acids than those obtained by the pressure system. Dr. Mario Solinas is deceased—May 23, 1993.  相似文献   

3.
Experiments were carried out to study the possibility of improving the stability of extra virgin olive oil by using nitrogen as a conditioner gas during storage. With this aim, virgin olive oil samples, obtained from Leccino and Coratina cultivars, were stored in the dark, in closed bottles conditioned with air or nitrogen at 12–20 and 40°C. Results indicated that the FFA percentage increased over 1% only when oils were stored at 40°C. The PV and the K 232 value (light absorbance at 232 nm) of oils increased over the limit value allowed by European Union law when the bottles were only partly filled and air was the conditioner gas. The use of nitrogen as conditioner gas helped to avoid this risk during 24 mon of storage at 12–20°C. The total phenolic content of both cultivars oils decreased during storage because their oxidation protected the oils from autoxidation. The content of total volatile compounds in oils decreased continuously during storage at 12–20°C, whereas it increased over 10 (Coratina cv.) and 15 (Leccino cv.) mon and then diminished when the storage temperature was 40°C. The same behavior, i.e., increase then decrease, was ascertained for trans-2-hexenal. The hexanal content of oils increased continuously during storage because this compound is formed by the decomposition of the 13-hydroperoxide of linoleic acid.  相似文献   

4.
Influence of ecological cultivation on virgin olive oil quality   总被引:1,自引:1,他引:0  
The quality of oil extracted from ecologically cultivated olives of the Picual variety was compared with oil extracted from Picual olives cultivated using conventional methods. Olive trees were grown in a two-section plot. Fruits from each plot were harvested at various stages of ripeness, and acidity value, peroxide index, ultraviolet absorption at 232 and 270 nm, stability to oxidation, sensory analysis, fatty composition, and contents of tocopherols, phenolic compounds, and sterols were determined on oil extracted from each treatment. The results showed that the organic virgin olive oil was of a superior quality to the conventional virgin olive oil in all the quality parameters analyzed.  相似文献   

5.
Stoning olives has been proposed as an alternative to crushing the whole fruit during the oil extraction process. Seven pairs of oils obtained from stoned and nonstoned olives from five different cultivars were evaluated to determine the effect of the proposed technology on oil quality. The main organoleptic and physicochemical parameters as well as resistance to oxidation showed no obvious influence of stoning on oil quality. Chemometric analysis of the data showed the oils grouped more according to genetics (cultivar) than to technology. Lipoxygenase activity in the paste from whole and stoned olives showed no effect that could be attributed to the technology. Furthermore, the stone did not contribute significantly to increasing the lipoxygenase activity in the olive paste.  相似文献   

6.
A cloudy (“veiled”) extra-virgin olive oil was stored 10 mon at room temperature and monitored at 15-d intervals. The oil was very stable under oxidizing conditions; a slight increase in free acidity (from 0.2 to 0.3%, expressed as oleic acid), a notable rise in the amount of diacylglycerols and a minor increase in peroxide content were observed. Turbidity disappeared after a few months due to chemical bonding between a nitrogen-containing component and the free acids that were released over time. The material in suspension, therefore, contained some chemical groups capable of acting as antioxidants.  相似文献   

7.
Aroma compounds in packaged extra virgin olive oil can be present naturally or be derived through oxidative degradation under favorable conditions of temperature, light, and oxygen availability. In this study, the identity and quantity of flavor compounds were determined for extra virgin olive oil packaged in 0.5-L glass, poly(ethylene terephthalate), and poly(vinyl chloride) bottles and stored at 15,30, and 40°C under fluorescent light or in the dark for 1 yr. A set of mathematical equations concerning the rates of the most fundamental oxidation reactions in the oil was prepared and numerically solved, and the reaction constants were estimated for specific temperature values. Mainly, the presence of fluorescent light, followed by elevated temperature, stimulated oxidative alterations in the olive oil. Separated and identified flavor compounds were recorded for all the olive oil samples. Based on their abundance and evolution in the oil samples, those most clearly describing oxidation were hexanal, nonanal, (E)-2-decenal, (E)-2-heptenal, and 2-pentyl furan. These compounds could be used as markers of the oxidation process to monitor and describe the quality of packaged olive oil quantitatively.  相似文献   

8.
In the present study, the probability of packaged olive oil not reaching the end of its shelf life, P safe, was used as a quality factor to evaluate the time taken for olive oils stored at various conditions to reach the end of their shelf lives. P safe was used to comment on the activation energy required during the degradation process per actual or simulated case, and hexanal was used as the main quality-related indicator. Based on the month after bottling at which P safe reached 70%, the activation energy of an “equivalent” chemical reaction, representative of overall quality degradation, was calculated for several storage conditions. Using the differences between activation energies estimated using the above method, we found the most important factors influencing the shelf life of the packaged olive oil to be the initial storage period in the dark, the role of elevated temperatures, and the presence of light, either continuous or in alternating patterns, in association with the packaging materials used in this study. These results were in qualitative agreement with previously reported experimental observations and simulations, indicating the validity of using P safe, and of activation energies calculated from it, to predict the shelf life of packaged olive oil.  相似文献   

9.
Effects of free fatty acids on oxidative stability of vegetable oil   总被引:1,自引:0,他引:1  
The effect of free fatty acid (FFA) content on the susceptibility to thermooxidative degeneration of vegetable oils was determined by Rancimat analysis. A prooxidant effect of FFA was observed in all filtered oils, independently of lipidic substrate and of its state of hydrolytic and oxidative alteration. The intensity of this effect was related to FFA concentration, but regression analysis of the experimental data did not show a general correlation law between FFA concentration and induction time (I t). Different results were obtained for freshly processed virgin olive oils, characterized by postpressing natural suspension-dispersion: opposite behavior was observed of FFA content as regards oxidative stability, depending on the presence of suspended-dispersed material. This fact is of interest because the dispersed particles play a double stabilizing effect on both oxidative and hydrolytic degradation. These results showed that avoidance of oil filtration is highly desirable to extend olive oil’s shelf life.  相似文献   

10.
The effects of adding mixtures of herbs such as garlic, laurel, and marjoram on selected chemical indices of olive oil from canned dried tomatoes were studied for various storage periods of up to 1 yr. Conventional analytical indices measured included acidity, PV, and p-anisidine value. Flavored samples showed kinetic constant values that were significantly (P=0.001) higher than unflavored ones, whereas oligopolymer and oxidized TG and DG contents were similar to or slightly higher than in the unflavored samples compared with those with herbs. The addition of the mixture of herbs slowed polymerization reactions but did not inhibit TG oxidation. Discrepancies between the results obtained by conventional analyses and high-performance size-exclusion chromatography indicated that the former approaches were insufficient to determine oxidative degradation of oil as a result of interferences from compounds in the food matrix.  相似文献   

11.
The feasibility of using DSC as an analytical method to evaluate the autoxidation of olive oil at 50°C and thermal oxidation at 93 and 180°C in 10-mL airtight vials was studied. DSC peak enthalpy and peak crystallization temperatures were compared with headspace oxygen depletion and headspace volatiles in oxidized oil samples. A single crystallization peak was found in olive oil. The crystallization peak shifted to lower temperatures, and the enthalpy associated with this phase transition decreased as the exposure time increased at 93 and 180°C. DSC peak enthalpy in olive oil at 50, 93, and 180°C showed correlations of 0.84, 0.91, and 0.95, respectively, with headspace oxygen depletion in sample bottles. Correlation of DSC initial peak temperature with headspace oxygen depletion was 0.53, 0.87, and 0.95 at 50, 93, and 180°C, respectively. Correlations of DSC peak enthalpy and initial peak temperature with headspace volatiles at 180°C were 0.95 and 0.97, respectively. These results indicate that DSC is a good analytical method to determine the oxidative stability of olive oil at frying temperature.  相似文献   

12.
The measurement of FA profile, polar material, oligomers, oxidized triacylglycerols (OTG), total polyphenols, and cyclic FA monomers (CFAM) was used to evaluate the alteration of a high-oleic sunflower oil (HOSO) and an extra virgin olive oil (EVOO) used in 75 domestic fryings of fresh potatoes with frequent replenishment (FR) of unused oil. CFAM were absent in the unused EVOO but appeared in small amounts in the unused HOSO. Although polar material, oligomers, OTG, and CTAM contents increased and linoleic acid and polyphenols content decreased in both oils during repeated frying, the changes produced should be considered small and related to the use of very stable oils and FR. Throughout the 75 fryings, the total CFAM concentration was higher in HOSO than in EVOO. OTG increased more quickly in EVOO, whereas oligomers increased more quickly in HOSO. Polar material and oligomer content appear significantly correlated (r=0.9678 and r=0.9739, respectively; for both, P<0.001) with the CFAM content. A 25% polar material and 12% oligomer content would correspond to about 1 mg·kg−1 oil of CFAM. Data suggest that both oils, particularly EVOO, perform very well in frying, with a low production of oligomers, polar materials, and CFAM.  相似文献   

13.
An analytical method has been developed to evaluate the intensity of the bitter taste in virgin olive oil. Results from the proposed method, based on extraction of the bitter constituents of virgin olive oil with methanol/water and measurement of the absorbance at 225 nm, show a significant correlation with the intensity of bitterness that had been evaluated in a sensorial manner by a panel. The developed method, therefore, offers a real alternative to the panel test for the evaluation of this attribute.  相似文献   

14.
Supercritical fluid extraction is a viable alternative process for extracting oil from olive husk, a residue obtained in the olive oil production. We analyzed the effects of pressure (P) (100–300 bar), temperature (T) (40–60°C), solvent flow (1–1.5 L/min), and particle size (D) (0.30–0.55 mm) on extraction yield, and three oil-quality parameters: acidity (OA), PV, and phosphorus content (PC). A response surface methodology based on the statistical analysis of the experimental data permitted us to obtain mathematical expressions relating the operational variables and parameters studied. At the best extraction condition of the experimental range analyzed (P=300 bar, T=60°C, D=0.30 mm, and solvent flow=1.25 L/min at standard conditions), the oil yield was 80% (w/w) with respect to hexane extraction, whereas the quality parameters OA, PV, and PC were 14% (w/w), 8 meq/kg, and 2.3·10−3% (w/w), respectively. These results were compared to those obtained by hexane Soxhlet extraction. The quality of the supercritical extract was superior, requiring only simple refining. This advantage may result in improved economics of the supercritical process in relation to the conventional extraction with hexane.  相似文献   

15.
Analysis of the polar fraction from virgin olive oil and pressed hazelnut oil by high-performance liquid chromatography showed marked differences in the chromatograms of the polar components in the two oils. Six commercial samples of pressed hazelnut oil and 12 samples of virgin olive oil (or blended olive oil including virgin olive oil) were analyzed. The phenolic content of the pressed hazelnut oil samples was 161±6 mg·kg−1. Inspection of the chromatograms showed that the pressed hazelnut oil extracts contained a component that eluted in a region of the chromatogram that was clear in the olive oil samples, and consequently this component could be used to detect adulteration of virgin olive oil by pressed hazelnut oil. The component had a relative retention time of 0.9 relative to 4-hydroxybenzoic acid added to the oil as an internal standard. The ultraviolet spectrum of the component showed a maximum at 293.8 nm, but the component could not be identified. Analysis of blends of oils showed that adulteration of virgin olive oil by commercial pressed hazelnut oil could be detected at a level of about 2.5%.  相似文献   

16.
The present study was carried out on 12 virgin olive oils to determine whether one year's storage under mild conditions of 15°C and darkness affected the initial pigment composition of recently extracted virgin olive oil. Although the total pigment content remained constant, the individual contribution of each pigment changed. The acid compounds liberated from the fruits during the oil extraction process promote the beginning of chlorophyll pheophytinization and the isomerization of the 5,6-epoxide groups of the minor xanthophylls. During the first 3 mon of storage, there was a generalized increase in pheophytinization that was different for each oil (P<0.01, Duncan test) but was not correlated with the free acidity measured in them. At the same time, isomerized xanthophylls and allomerized pheophytins increased slightly. Following this stage, pyropheophytin a (a pigment not present in the initial oils), was detected; its concentration increased during storage. There were no significant differences in the final percentages of pyropheophytin a among the 12 oils, and the concentration of this new compound represented around 3% of the chlorophyll fraction. The pheophytin a/pyropheophytin a ratio always exceeded 20. All these small pigment transformations were signs that the oil had been stored. The content and class of pigments present in virgin olive oil are authentic indicators of its history prior to marketing.  相似文献   

17.
The aim of this work was to determine the effect of the climatological conditions of the olive crop season on the composition of monovarietal virgin olive oils obtained from the Arbequina cultivar with special emphasis on the phenolic fraction, its percent distribution, and related oil quality parameters such as oxidative stability and bitter index. The main differences were due to freeze injuries caused by low temperatures in December 2001. The levels of chlorophylls and carotenoids in olive oil or pulp from frost-damaged olive trees were lower as a consequence of faster ripening. The olive oil extracted from frost-damaged olive pulp had lower contents of secoiridoid and especially lower levels of 3,4-DHPEA-EDA (the dialdehydic form of elenolic acid linked to hydroxytyrosol). In the following crop seasons, a significant increase in phenolic compounds, especially in secoiridoid derivatives such as 3,4-DHPEA-EDA, was observed. This increase may be due to the fact that olive trees that suffered frost damage in December 2001 were more sensitive to stress caused by the water deficit during summer in the subsequent crop seasons, which is usual in this olive-growing region. Moreover, important correlation coefficients were observed between the main secoiridoid derivative compound (3,4-DHPEA-EDA) and oxidative stability and the bitter index.  相似文献   

18.
The chlorophyll and carotenoid pigment composition in 12 mono-variety virgin olive oils was examined every 30 d during 1 yr of storage at 15°C in darkness. The oil authenticity parameters, as defined by the ratio of chlorophylls/carotenoids and the ratio of minor carotenoids/lutein, remained stable throughout storage, irrespective of the variety and degree of ripeness of the source fruit. The percent of violaxanthin, percent of lutein, and total pigment content, the classifying variables chosen as the best possible discriminators among olive varieties, also remained stable during storage. The prediction model for olive variety, which was based on a discriminant multivariate analysis of the observed values of these variables, gave a correct classification in 99.6% of the oils analyzed. The discriminant criterion established remained valid after 1 yr of oil storage. The detection of chlorophyll derivatives other than those associated with the physical extraction process was seen as a quality index, as small, analytically detectable transformations in the structure of pigments were indicative of oil storage.  相似文献   

19.
A method for the determination of acid values (AV) in olive oil without titration is proposed, based on pH measurements on an oil sample emulsion in a suitable reagent and fully automated using a robotic station. The robot performs the weighing of the sample, adds the reagent, emulsifies both, and measures the pH of the emulsion. The data are acquired and treated by the computer. After optimization, two versions of the measurement step (interpolation within a calibration curve and addition of standard) are developed and applied to 51 oil samples with AV values that also have been determined by the standard method based on potentiometric titration. Both versions are statistically compared with the standard method, and no significant differences are found. Excellent correlation (R>0.99) between all three methods demonstrates the usefulness of the fully automated approach that works at a sample rate of 15 sample h−1 with relative standard deviations lower than 2.5%.  相似文献   

20.
The antioxidant effects of hydrophilic phenols and tocopherols on the oxidative stability in virgin olive oils and in purified olive oil have been evaluated. Total hydrophilic phenols and the oleosidic forms of 3,4-dihydroxyphenolethanol (3,4-DHPEA) were correlated (r=0.97) with the oxidative stability of virgin olive oil. On the contrary, tocopherols showed low correlation (r=0.05). Purified olive oil with the dialdehydic form of elenolic acid linked to 3,4-DHPEA, an isomer of oleuropeine aglycon, and 3,4-DHPEA had good oxidative stability. A synergistic effect was observed in the mixture of 3,4-DHPEA and its oleosidic forms with α-tocopherol in purified olive oil by the Rancimat method at 120°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号