首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between overall thermal sensation, acceptability and comfort were studied experimentally under uniform and non-uniform conditions separately. Thirty subjects participated in the experiment and reported their local thermal sensation of each body part, overall thermal sensation, acceptability and comfort simultaneously. Sensation, acceptability and comfort were found to be correlated closely under uniform conditions and acceptable range ran from neutral to 1.5 (midpoint between ‘Slightly Warm’ and ‘Warm’) on thermal sensation scale and contained all comfortable and slightly uncomfortable votes on thermal comfort scale. Under non-uniform conditions overall thermal acceptability and comfort were correlated closely. However, overall thermal sensation was apart from the other two responses and non-uniformity of thermal sensation was found to be the reason for the breakage. Combining the effects of overall thermal sensation and non-uniformity of thermal sensation, a new thermal acceptability model was proposed and the model was testified to be applicable to uniform and non-uniform conditions over a wide range of whole body thermal state from neutral to warm.  相似文献   

2.
A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort responses (Part III). The models predict these subjective responses to the environment from thermophysiological measurements or predictions (skin and core temperatures). The models apply to a range of environments: uniform and non-uniform, transient and stable. They are based on diverse results from literature and from body-part-specific human subject tests in a climate chamber. They were validated against a test of passengers in automobiles. This series is intended to present the rationale, structure, and coefficients for these models so that others can test them and develop them further as additional empirical data becomes available. The experimental methods and some measured results from the climate chamber tests have been published previously.Part II describes a thermal comfort model with coefficients representing 19 individual local body parts. For each part, its local comfort is predicted from local and whole-body thermal sensations. These inputs are obtained from the sensation models described in Part I and III, or from measurements.  相似文献   

3.
A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort responses (Part III). The models predict these subjective responses to the environment from thermophysiological measurements or predictions (skin and core temperatures). The models apply to a range of environments: uniform and non-uniform, transient and stable. They are based on diverse results from the literature and from body part-specific human subject tests in a climate chamber. They were validated against a test of passengers in automobiles. This series is intended to present the rationale, structure, and coefficients for these models so that others can test and develop them further as additional empirical data becomes available. The experimental methods and some measured results from the climate chamber tests have been published previously.Part I describes thermal sensation models representing 19 individual local body parts. The models' structure and coefficients were derived by regression of skin and core temperatures against thermal sensation votes obtained in the chamber experiments. The sensation for each local body part is predicted by a logistic function with four inputs: local skin temperature, mean-skin temperature presenting the whole-body thermal state, and the time derivatives of skin and core temperatures representing the response to transients. These inputs can be obtained from thermophysiological computer programs that treat the body as multiple segments.  相似文献   

4.
张宇峰  赵荣义 《暖通空调》2007,37(12):25-31
对30名受试者采用问卷调查的方式,研究了均匀热环境和不均匀热环境下人体全身热感觉、热可接受度和热舒适的关系。结果显示,在均匀热环境下,全身热感觉、热可接受度和热舒适具有较强的线性相关关系,可接受范围涵盖了(0,1.5)的热感觉投票和"舒适"与"稍有不适"标度范围内的热舒适投票;在不均匀热环境下,全身热可接受度与热舒适密切相关,而全身热感觉与热可接受度和热舒适出现分离,热感觉不均匀度是其原因。综合考虑全身热感觉和热感觉不均匀度的影响,提出了综合评价模型。经验证,该模型适用于全身热状态为中性偏热的均匀和不均匀热环境。  相似文献   

5.
This paper presents a study of local thermal sensation (LTS) and comfort in a field environmental chamber (FEC) served by displacement ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 tropically acclimatized subjects, 30 male and 30 female, were engaged in sedentary office work for 3 h. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures of 20, 23 and 26 °C at 0.6 m height. The objective of this study is to investigate the mutual effect of local and overall thermal sensation (OTS) and comfort in DV environment. The results show that in a space served by DV system, at OTS close to neutral, local thermal discomfort decreased with the increase of room air temperature. The OTS of occupants was mainly affected by LTS at the arm, calf, foot, back and hand. Local thermal discomfort was affected by both LTS and OTS. At overall cold thermal sensation, all body segments prefer slightly warm sensation. At overall slightly warm thermal sensation, all body segments prefer slightly cool sensation.  相似文献   

6.
Subjective experiments with task conditioning systems, 3DU+, PEM, TU, and RCU were conducted to investigate the effect of three different types of Task air-conditioning systems on thermal comfort in a climate chamber. The chamber was conditioned at 28 °C/50%RH with task systems and 26 °C/50%RH without them. Under the condition with the task conditioning systems, the average rating of comfort sensation was between comfortable (0) and slightly uncomfortable (−1). For males it was between −0.5 and −0.7 and for females between −0.3 and −0.4. This was equal to or even better than that in condition without task system. It was found that these systems were effective in providing thermal comfort. The parts to which subjects wanted to diffuse air were different for each system. However, the individual control of task conditioning system contributed to create the preferred environment.  相似文献   

7.
随机选取30名男性受试者,在中性偏热的房间中,局部冷气流分别作用于脸部、胸部和背部,采用问卷调查的方法以一定的时间间隔记录了受试者身体各个部位的局部热感觉和全身热感觉。结果表明,局部热暴露在改变暴露部位和全身的热感觉的同时,也显著改变了非暴露部位的热感觉,据此提出了基于影响因子的分析方法和全身热感觉的预测模型。  相似文献   

8.
The relationship between thermal sensation and thermal comfort was studied experimentally under uniform and non-uniform, steady and dynamic conditions separately. Thirty subjects participated in all the experiment and reported their thermal sensation and thermal comfort simultaneously. Thermal sensation and comfort are found to be correlated closely under steady and uniform conditions and the comfort zone of thermal sensation vote in warm side is (0, 1.25). Under steady and non-uniform conditions thermal sensation change with space is found to be an important factor determining thermal comfort. Combining the effects of overall thermal sensation and thermal sensation change with space, a thermal comfort model for steady conditions is proposed. Under dynamic conditions, thermal sensation change with time affects thermal comfort significantly.  相似文献   

9.
This paper presents a thermal comfort study using a thermal manikin in a field environment chamber served by the Displacement Ventilation (DV) system. The manikin has a female body with 26 individually heated and controlled body segments. The manikin together with subjects was exposed to 3 levels of vertical air temperature gradients, nominally 1, 3 & 5 K/m, between 0.1 and 1.1 m heights at 3 room air temperatures of 20, 23 and 26 °C at 0.6 m height. Relative humidity at 0.6 m height and air velocity near the manikin and the subjects were maintained at 50% and less than 0.2 m/s, respectively. The aims of this study are to assess thermally non-uniform environment served by DV system using the manikin and correlate the subjective responses with measurements from the manikin. The main findings indicate that room air temperature had greater influence on overall and local thermal sensations and comfort than temperature gradient. Local thermal discomfort decreased with increase of room air temperature at overall thermally neutral state. The local discomfort was affected by overall thermal sensation and was lower at overall thermally neutral state than at overall cold and cool sensations.  相似文献   

10.
This paper explores how upper extremity skin temperatures correlate with overall-body thermal sensation. Skin temperature measurements of the finger, hand, and forearm might be useful in monitoring and predicting people's thermal state. Subjective perceptions of overall thermal sensation and comfort were collected by repeated surveys, for subjects in a range of test chamber temperatures. A positive temperature gradient (finger warmer than the forearm) of as much as 2 K was seen when subjects felt warm and hot, while a negative temperature gradient (finger colder than the forearm) as much as 8.5 K was seen for cool and cold subjects. A useful warm/cold boundary of 30 °C was found in finger temperature, for both steady state and transient conditions. When finger temperature was above 30 °C, or finger-forearm skin temperature gradient above 0 K, there was no cool discomfort. When finger temperature was below 30 °C, or the finger-forearm skin temperature gradient less than 0 K, cool discomfort was a possibility. Finger temperature and finger-forearm temperature gradient are very similar in their correlation to overall sensation. We also examine how overall sensation is affected by actively manipulating the hand's temperature.  相似文献   

11.
The comfort zone is bounded by thermal environmental conditions that may be described as acceptably cool or acceptably warm, and engineering out of existence these innocuous thermal conditions on the fringes of the adaptive comfort range may not be necessary. In contrast to the conventional understanding of local discomfort, spatial alliesthesia exploits corrective differences in the rate of change in skin temperature between individual body segments to elicit positive affective sensations. This paper examines reverse instances of local discomfort, or spatial alliesthesia, from warm contact stimuli applied to hand and feet when exposed to ambient conditions towards the lower margin of the comfort zone. It was found that subjects with moderate feelings of displeasure or even indifference were still capable of experiencing a pleasant response to localized thermal stimuli. Brief whole-body thermal pleasure was observed from in-situ skin temperature changes at a single distal body site. These effects were subtle and not universally experienced, so the success of their deliberate implementation in built environments depends heavily on some form of individual control. Spatial alliesthesia therefore complements the body of literature investigating personal environmental control and local thermal discomfort by providing a theoretical framework of thermal perception in non-neutral environments.  相似文献   

12.
The validity of existing thermal comfort models is examined for upper primary school children in classroom settings. This is of importance to enhance productivity in the learning environment and to improve the control of artificial heating and cooling, including the potential for energy savings. To examine the thermal perceptions of children aged 10–12 years in non-air-conditioned classrooms, three sets of field experiments were conducted in boys’ and girls’ primary schools in Shiraz, Iran. These were undertaken during regular class sessions covering cool and warm conditions of the school year, polling responses from 1605 students. This paper illustrates the overall methods and reports the results of the warm season field survey (N?=?811). This investigation suggests that predicted mean vote-predicted percentage of dissatisfied (PMV/PPD) underestimates children's actual thermal sensation and percentage dissatisfied in the investigated classrooms. The analysis shows that sampled children may be slightly less sensitive to indoor temperature change than adults. The upper acceptable temperature derived from children's responses corresponding to mean thermal sensations of +0.85 is 26.5°C, which is about 1°C lower than the ASHRAE upper 80% acceptability limit. This implies that sampled children feel comfortable at lower temperatures than predicted by the ASHRAE Adaptive model during the warm season.  相似文献   

13.
Y. Zhang  H. Chen  J. Wang  Q. Meng 《Indoor air》2016,26(5):820-830
We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China.  相似文献   

14.
In this study the interrelation between local and overall thermal comfort of passengers in aircraft cabins was investigated by thirteen simulated flights. For each of the tests forty test persons filled out questionnaires concerning their perceived overall and local thermal comfort at temperatures of 20 °C–25 °C, which were measured at every second seat. With these physical and subjective data PMV (Predicted Mean Vote) and TSMV (Thermal Sensation Mean Vote) of test persons as well as PPD (Predicted Percentage of Dissatisfied) and PD (Percentage of Dissatisfied) were compared. The PMV was consistently similar to the TSMV, while the thermal dissatisfaction in tests was always higher than PPD. The hypothesis at the beginning of this study was that the high ratio of thermal dissatisfaction in the aircraft cabin reported in literature might be caused by local discomfort. Therefore statistical analyses about the interrelations between local and overall thermal comfort were performed and models indicating such interrelations were developed. Some local perceptions are significantly different from overall thermal perception and these body segments alter in dependence of the overall thermal environment. Also body segments rated similarly were detected and these segments were pooled to distinct body regions using principal component analysis. Under the same overall thermal sensation the local thermal perception on a certain body region predominantly influenced the overall thermal comfort. Therefore weighting factors of local body regions on the overall thermal comfort were determined in dependence of the overall thermal sensation by means of multiple linear regression models.  相似文献   

15.
The potential for improving occupants’ thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by UFAD system and uncomfortable sensation as “warm head” can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems – a primary air handling unit (AHU) for 100% outdoor air that is supplied through the PV air terminal devices and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Responses of the subjects to the PV-UFAD system were collected at various room air and PV air temperature combinations. The analyses of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air temperature was adopted in the PV-UFAD system.  相似文献   

16.
Human thermal comfort is studied as a countermeasure to the thermal stress in outdoor urban space. Outdoors, people experience the strong impact of solar radiation in states that are unsteady and non-uniform. The feeling of comfort is a mixed sensation that can be easier to improve overall, as compared with a global large-scale effort, and can lead to improved ways of saving energy and reducing costs. Moreover, this can be directly beneficial to human experience and fulfill natural human desires. Since a thermal comfort index is a useful tool for understanding the present state and evaluating the impact of countermeasures, we examine the effects of the human thermal load, which is a thermal comfort index based on the energy balance of the human body. In a steady state, and even in an unsteady state with its variations in weather and human factors, thermal comfort values can generally be obtained by using the overall human thermal load. The reason for this is that the human thermal load takes physiological factors in account as well as weather parameters. This leads to the idea that thermal sensations follow from the human thermal load, which can then well describe a given human environment. As a result, human sensations as expressed by the human thermal load pave the way to the creation of comfortable urban spaces that require minimum expense and energy as an example of simple heat transport model focusing on urban outer structure.  相似文献   

17.
The effect of vertical air temperature gradient on overall and local thermal comfort at different overall thermal sensations and room air temperatures (at 0.6 m height) was investigated in a room served by displacement ventilation system. Sixty tropically acclimatized subjects performed sedentary office work for a period of 3 h during each session of the experiment. Nominal vertical air temperature gradients between 0.1 and 1.1 m heights were 1, 3 and 5 K/m while nominal room air temperatures at 0.6 m height were 20, 23 and 26 °C. Air velocity in the space near the subjects was kept at below 0.2 m/s. Relative humidity at 0.6 m height was maintained at 50%. It was found that temperature gradient had different influences on thermal comfort at different overall thermal sensations. At overall thermal sensation close to neutral, only when room air temperature was substantially low, such as 20 °C, percentage dissatisfied of overall body increased with the increase of temperature gradient. At overall cold and slightly warm sensations, percentage dissatisfied of overall body was non-significantly affected by temperature gradient. Overall thermal sensation had significant impact on overall thermal comfort. Local thermal comfort of body segment was affected by both overall and local thermal sensations.  相似文献   

18.
X. Zhou  Q. Ouyang  Y. Zhu  C. Feng  X. Zhang 《Indoor air》2014,24(2):171-177
To investigate whether occupants’ anticipated control of their thermal environment can influence their thermal comfort and to explain why the acceptable temperature range in naturally ventilated environments is greater than that in air‐conditioned environments, a series of experiments were conducted in a climate chamber in which the thermal environment remained the same but the psychological environment varied. The results of the experiments show that the ability to control the environment can improve occupants’ thermal sensation and thermal comfort. Specifically, occupants’ anticipated control decreased their thermal sensation vote (TSV) by 0.4–0.5 and improved their thermal comfort vote (TCV) by 0.3–0.4 in neutral‐warm environment. This improvement was due exclusively to psychological factors. In addition, having to pay the cost of cooling had no significant influence on the occupants’ thermal sensation and thermal comfort in this experiment. Thus, having the ability to control the thermal environment can improve occupants’ comfort even if there is a monetary cost involved.  相似文献   

19.
Scales are widely used to assess the personal experience of thermal conditions in built environments. Most commonly, thermal sensation is assessed, mainly to determine whether a particular thermal condition is comfortable for individuals. A seven-point thermal sensation scale has been used extensively, which is suitable for describing a one-dimensional relationship between physical parameters of indoor environments and subjective thermal sensation. However, human thermal comfort is not merely a physiological but also a psychological phenomenon. Thus, it should be investigated how scales for its assessment could benefit from a multidimensional conceptualization. The common assumptions related to the usage of thermal sensation scales are challenged, empirically supported by two analyses. These analyses show that the relationship between temperature and subjective thermal sensation is non-linear and depends on the type of scale used. Moreover, the results signify that most people do not perceive the categories of the thermal sensation scale as equidistant and that the range of sensations regarded as ‘comfortable’ varies largely. Therefore, challenges known from experimental psychology (describing the complex relationships between physical parameters, subjective perceptions and measurement-related issues) need to be addressed by the field of thermal comfort and new approaches developed.  相似文献   

20.
It is difficult for a total air-conditioning system to satisfy the thermal comfort of all workers in an office. Therefore, an individually controlled system that can create a comfortable thermal environment for each worker is needed. In the present study, two chairs incorporating two fans each, one under the seat and one behind the backrest, were developed to provide isothermal forced airflow to the chair occupant. The chairs differed in the size of the fans. Experiments were conducted in a climate chamber during the summer. Seven subjects, who were healthy male college students, were allowed to freely control the two built-in fans by adjusting dials on the accompanying desk. The room air temperatures were set at 26 °C, 28 °C, 30 °C and 32 °C. The following findings were obtained. At a room air temperature of 28 °C, the whole-body thermal sensations were almost thermally neutral, regardless of the type of chair. At a room air temperature of 30 °C, the occupants were able to create acceptable thermal environments from the viewpoints of whole-body thermal sensation and comfort by using the chairs with fans. Their local discomfort rates at the back and lower back, which were affected by the isothermal airflows, were greatly improved at this room air temperature. However, at a room air temperature of 32 °C, the chairs tested in the present study were not able to provide acceptable thermal environments. In order to provide a more comfortable environment to the chair occupants, additional local systems to cool the head, arms, and hands are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号