首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
卢雅琳  黄维超  江海涛  李淼泉 《铸造》2004,53(12):997-1000
研究了变形温度和应变速率对半固态和供应态LY11合金峰值流动应力、稳态流动应力以及微观组织的影响.由试验结果可知:变形温度对LY11合金的峰值应力影响显著,对稳态应力影响较小.应变速率对峰值应力的影响与变形温度有关.变形温度对微观组织的影响是:随着变形温度的升高,半固态LY11合金的近球状晶粒不断长大,供应态LY11合金的不规则细长晶粒逐渐向近球状转变,这种转变有助于改善材料的流动性能.  相似文献   

2.
以热模拟压缩实验为基础,研究了变形工艺参数(包括变形温度、应变速率和变形程度)对半固态Al-4Cu-Mg合金变形力学行为和微观组织的影响.研究结果表明:半固态Al-4Cu-Mg合金的流变应力峰值对变形温度和应变速率的变化比较敏感;变形温度和应变速率对稳态流动应力影响较小.应变速率对流变应力峰值的影响与变形温度有关.变形工艺参数对微观组织的影响为:随着变形温度的升高和应变速率的减小,α相晶粒平均尺寸增大,半固态Al-4Cu-Mg合金变形后的组织仍保持近球状组织,这与变形过程中固态α相的流动方式有关.  相似文献   

3.
在Gleeble-3500热模拟机上对半固态7050铝合金进行了高温热压缩试验,研究了该合金在变形温度为420~465℃、应变速率为0.001~0.100s-1条件下的流变应力行为以及变形过程中的显微组织。结果表明,流变应力在变形初期随着应变的增大迅速增大,出现峰值应力后逐渐平稳,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以用双曲线正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,合金中拉长的晶粒变大,合金热压缩变形的主要软化机制为动态再结晶。  相似文献   

4.
利用Gleeble 1500热/力模拟机对Ti14合金进行了半固态压缩变形试验,研究了该合金在应变速率为5×10-2 s-1和5×10-1 s-1,变形温度为1273~1423 K条件下的流变应力变化规律,分析了该合金半固态下应力松弛发生的条件和原因,并讨论了温度、应变速率和变形机制之间的耦合关系.结果表明:温度和应变速率对流变应力有显著的影响,流变应力随着变形温度的升高和应变速率的降低而降低,宏观应力松弛发生在固相含量区间为0.95~0.98,主要是因为液相的增加减少了晶粒间的“固相桥”作用.由于液相在变形中的渗漏,Ti14合金在1273~1423 K半固态变形的应变速率试验值远远小于Iwasaki润滑流动机制(固液混合变形机制)所需的理论值,说明在所测试的半固态区间内合金仍以固相粒子变形为主,固液混合变形为协调机制.  相似文献   

5.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

6.
《塑性工程学报》2013,(3):82-86
对半固态ZL101合金坯料进行等温压缩实验,研究变形温度、应变速率对半固态ZL101合金流动应力的影响。结果表明,半固态ZL101合金的流动应力随着变形温度的升高而降低,随着应变速率的增大而增大。DOE实验表明,应变速率对材料的流动应力影响较大。采用遗传算法对半固态等温压缩实验数据进行拟合,得到ZL101合金的本构关系,并将其导入到有限元程序中进行计算,模拟结果与实验结果基本吻合。  相似文献   

7.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si-Cr合金在变形温度为600~800℃、应变速率为0.01~5 s-1条件下的动态再结晶行为以及组织转变进行了研究,分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化.结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大,材料显微组织强烈受到变形温度的影响.  相似文献   

8.
针对环轧态Ti40钛合金,进行等温恒应变速率高温压缩变形实验,研究合金在应变速率0. 001~1 s~(-1),温度950~1100℃范围变形过程中流变应力和微观组织演变行为,并通过流变应力曲线拟合计算建立合金该变形条件下的流变应力本构方程。实验结果表明:流变应力随着应变量的增加急速升高而后突降,同时流变应力随着应变速率增大而增大,这与位错密度增殖和运动密切相关;当合金变形温度一定时,随着应变速率变小,内部组织发生动态再结晶,平均晶粒尺寸得到细化;但当应变速率一定时,合金在较低应变速率(0. 001 s~(-1))变形时,需适当控制变形温度,才能得到晶粒更细小的均匀组织。  相似文献   

9.
利用Gleeble1500热/力模拟机对Ti14合金进行了半固态压缩变形试验,研究了该合金在应变速率为5×10-2s-1和5×10-1s-1,变形温度为1273~1423K条件下的流变应力变化规律,分析了该合金半固态下应力松弛发生的条件和原因,并讨论了温度、应变速率和变形机制之间的耦合关系。结果表明:温度和应变速率对流变应力有显著的影响,流变应力随着变形温度的升高和应变速率的降低而降低,宏观应力松弛发生在固相含量区间为0.95~0.98,主要是因为液相的增加减少了晶粒间的"固相桥"作用。由于液相在变形中的渗漏,Ti14合金在1273~1423K半固态变形的应变速率试验值远远小于Iwasaki润滑流动机制(固液混合变形机制)所需的理论值,说明在所测试的半固态区间内合金仍以固相粒子变形为主,固液混合变形为协调机制。  相似文献   

10.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s^-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

11.
在变形温度为300~450 oC、应变速率为0.01~1 s-1的条件下进行热压缩试验,对Mg-5Y-0.5Ce-0.5Zr镁合金的热变形行为进行了研究。结果表明,在热压缩变形过程中,该合金的流变应力随着变形温度和应变速率的变化而变化。在同一应变速率下,流变应力随着变形温度的增高而降低;在同一变形温度下,流变应力随着应变速率的减小而减小。该合金热压缩流变应力的本构方程可采用双曲正弦形式构建,热变形激活能Q为253 kJ/mol。  相似文献   

12.
针对大型船用曲轴曲拐所用材料S34Mn V合金钢,利用Gleeble-3800热模拟实验机对其进行高温压缩实验,研究了S34Mn V合金钢在变形温度为950~1250℃、应变速率为0.001~10 s-1和压缩变形量为70%条件下的高温变形行为,得到了其真实应力-应变曲线。分析了变形温度、应变速率对S34Mn V合金钢高温流变行为的影响。结果表明,变形温度和应变速率对流动应力影响显著,流动应力随变形温度升高而下降,随应变速率增大而上升;低的应变速率、高的变形温度,更易于动态再结晶的发生,有利于降低流动应力。  相似文献   

13.
采用Gleeble-3800型热模拟试验机对MoNb合金进行等温恒应变速率压缩试验,研究该合金在变形温度900~1200℃和应变速率0.01~10 s^-1条件下的热变形行为,计算其热变形激活能。结果表明:变形温度和应变速率对流动应力具有显著影响,流动应力随变形温度的升高和应变速率的降低而减小。误差分析表明,采用多元线性回归法建立的MoNb合金本构关系模型具有较高的精度,该模型的预测值误差小于10%的数据点占总数的92.86%,相关系数和平均相对误差分别为0.976和4.08%,能较为准确的预测合金的高温流动应力。  相似文献   

14.
The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the swain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation.  相似文献   

15.
1. Introduction New spray formed 70Si30Al alloy developed for electronic packaging application has excellent physical characteristics [1-5], which include low coefficiency of thermal expansion (6.8 × 10?6/K), high thermal conductivity (120 W/(m?K)), and low density (2.4 g/cm3), therefore, the exploitation and application of the alloy have an extensive prospect. To evaluate the deformation characteristics of spray formed 70Si30Al and to determine the appropriate hot deformation procedure of …  相似文献   

16.
TA15合金的热变形行为及加工图   总被引:10,自引:0,他引:10  
研究了TA15合金的热模拟压缩实验。结果表明:变形温度的升高和应变速率的减小使峰值应力和稳态应力显著降低,变形温度会影响进入稳态流动所需变形量。以热模拟压缩实验为基础,建立的加工图表明:TA15合金高温变形时存在2个非稳定区域,一个是变形温度1300K以上和应变速率10.0s^-1以上的区域,另一个是变形温度1200K以下和应变速率0.006s^-1~1.995s^-1之间的区域。同时,建立的TA15合金高温变形时的流动应力模型表征了变形温度、应变速率和变形程度对流动应力的影响,模型的计算精度较高。  相似文献   

17.
采用Gleeble-1500热模拟机,研究了基于半固态等温热处理技术制备的Y112铝合金,在不同变形温度和变形速率下的半固态压缩变形力学行为。结果表明,当压缩应变低于0.8时,随着压缩应变的增加,合金的半固态压缩应力首先快速增加,然后快速减小,最后逐渐保持不变;同时,在不同变形温度和变形条件下,合金在压缩应变近似为0.07时均可获得最大的半固态压缩应力;此外,随着变形温度降低或变形速率升高,合金的半固态压缩变形应力增加。  相似文献   

18.
Al-20Cu-4.5Si-3Ni-0.25RE合金的高温流变本构方程   总被引:1,自引:1,他引:0  
在Gleeble-1500热模拟机上进行高温等温圆柱体压缩试验,研究Al-20Cu-4.5Si-3Ni-0.25RE合金在高温塑性变形过程中流变应力的变化规律。结果表明:应变速率和变形温度的变化强烈地影响Al-20Cu-4.5Si-3Ni-0.25RE合金的流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大。可用Zener-Hollomon参数的双曲正弦形式来描述Al-20Cu-4.5Si-3Ni-0.25RE合金热压缩变形时的流变应力行为。  相似文献   

19.
7075铝合金热压缩变形流变应力   总被引:42,自引:10,他引:42  
在Gleeble-1500热模拟试验机上,采用高温等温压缩试验,对7075铝合金在高温压缩变形中的流变应力行为进行了研究。结果表明,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;可用Zener-Hollomon参数的指数形式来描述7075铝合金高温压缩变莆时的流变应力行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号