首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The aim of this study was to evaluate the use of near infrared reflectance (NIR) spectroscopy to monitor water uptake and steeping time in whole barley samples as a rapid and easy to use technique. Whole barley grain samples were steeped in water, and subsamples were analyzed for water uptake (gravimetric method) and using NIR spectroscopy. The spectra and the analytical data were used to develop partial least squares (PLS) calibrations to predict water uptake and steeping time. Cross validation models for water uptake and steeping time gave a coefficient of determination in cross validation (R2) and the standard error of prediction (SEP) of 0.90 (SEP = 5.36 g/100 g fw) and 0.92 (SEP = 3.93 h), respectively. This study showed that NIR spectroscopy combined with PLS regression showed promise as a rapid, non-destructive method to monitor and measure water uptake and steeping time in whole barley during soaking.  相似文献   

2.
Camellia oil is often the target for adulteration or mislabeling in China because of it is a high priced product with high nutritional and medical values. In this study, the use of attenuated total reflectance infrared spectroscopy (MIR-ATR) and fiber optic diffuse reflectance near infrared spectroscopy (FODR-NIR) as rapid and cost-efficient classification and quantification techniques for the authentication of camellia oils have been preliminarily investigated. MIR spectra in the range of 4000–650 cm−1 and NIR spectra in the range of 10,000–4000 cm−1 were recorded for pure camellia oils and camellia oil samples adulterated with varying concentrations of soybean oil (5–25% adulterations in the weight of camellia oil). Identifications is successfully made base on the slightly difference in raw spectra in the MIR ranges of 1132–885 cm−1 and NIR ranges of 6200–5400 cm−1 between the pure camellia oil and those adulterated with soybean oil with soft independent modeling of class analogy (SIMCA) pattern recognition technique. Such differences reflect the compositional difference between the two oils with oleic acid being the main ingredient in camellia oil and linoleic acid in the soybean oil. Furthermore, a partial least squares (PLS) model was established to predict the concentration of the adulterant. Models constructed using first derivative by combination of standard normal variate (SNV), variance scaling (VS), mean centering (MC) and Norris derivative (ND) smoothing pretreatments yielded the best prediction results With MIR techniques. The R value for PLS model is 0.994.The root mean standard error of the calibration set (RMSEC) is 0.645, the root mean standard error of prediction set (RMSEP) and the root mean standard error of cross validation (RMSECV) are 0.667 and 0.85, respectively. While with NIR techniques, NIR data without derivative gave the best quantification results. The R value for NIR PLS model is 0.992. The RMSEC, RMSEP and RMSECV are 0.70, 1.78 and 1.79, respectively. Overall, either of the spectral method is easy to perform and expedient, avoiding problems associated with sample handling and pretreatment than the conventional technique.  相似文献   

3.
The combination of UV, visible (Vis), near-infrared (NIR) and mid-infrared (MIR) spectroscopy with multivariate data analysis was explored as a tool to classify commercial Sauvignon Blanc (Vitis vinifera L., var. Sauvignon Blanc) wines from Australia and New Zealand. Wines (n = 64) were analysed in transmission using UV, Vis, NIR and MIR regions of the electromagnetic spectrum. Principal component analysis (PCA), soft independent modelling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA) were used to classify Sauvignon Blanc wines according to their geographical origin using full cross validation (leave-one-out) as a validation method. Overall PLS-DA models correctly classified 86% of the wines from New Zealand and 73%, 86% and 93% of the Australian wines using NIR, MIR and the concatenation of NIR and MIR, respectively. Misclassified Australian wines were those sourced from the Adelaide Hills of South Australia. These results demonstrate the potential of combining spectroscopy with chemometrics data analysis techniques as a rapid method to classify Sauvignon Blanc wines according to their geographical origin.  相似文献   

4.
More than 3.2 million litres of vinegar is consumed every day in China. There are many types of vinegar in China. How to control the quality of vinegar is problem. Near infrared spectroscopy (NIR) transmission technique was applied to achieve this purpose. Ninety-five vinegar samples from 14 origins covering 11 provinces in China were collected. They were classified into mature vinegar, aromatic vinegar, rice vinegar, fruit vinegar, and white vinegar. Fruit vinegar and white vinegar were separated from the other traditional categories in the two-dimension principal component space of NIR after principle component analysis (PCA). Least-squares support vector machine (LS-SVM) as the pattern recognition was firstly applied to identify mature vinegar, aromatic vinegar, rice vinegar in this study. The top two principal components (PCs) were extracted as the input of LS-SVM classifiers by principal component analysis (PCA). The best experimental results were obtained using the radial basis function (RBF) LS-SVM classifier with σ = 0.8. The accuracies of identification were more than 85% for three traditional vinegar categories. Compared with the back propagation artificial neural network (BP-ANN) approach, LS-SVM algorithm showed its excellent generalisation for identification results. As total acid content (TAC) is highly connecting with the quality of vinegar, NIR was used to prediction the TAC of samples. LS-SVM was applied to building the TAC prediction model based on spectral transmission rate. Compared with partial least-square (PLS) model, LS-SVM model gave better precision and accuracy in predicting TAC. The determination coefficient for prediction (Rp) of the LS-SVM model was 0.919 and root mean square error for prediction (RMSEP) was 0.3226. This work demonstrated that near infrared spectroscopy technique coupled with LS-SVM could be used as a quality control method for vinegar.  相似文献   

5.
This paper reported the results of simultaneous analysis of main catechins (i.e., EGC, EC, EGCG and ECG) contents in green tea by the Fourier transform near infrared reflectance (FT-NIR) spectroscopy and the multivariate calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The number of PLS factors and the spectral preprocessing methods were optimised simultaneously by cross-validation in the model calibration. The performance of the final model was evaluated according to root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP) and correlation coefficient (R). The correlations coefficients (R) in the prediction set were achieved as follows: R = 0.9852 for EGC model, R = 0.9596 for EC model, R = 0.9760 for EGCG model and R = 0.9763 for ECG model. This work demonstrated that NIR spectroscopy with PLS algorithm could be used to analyse main catechins contents in green tea.  相似文献   

6.
Total volatile basic nitrogen (TVB-N) content is one of important index of pork’s freshness, and Warner–Bratzler shear force (WBSF) is seen as the important index of pork’s tenderness. This paper attempted the feasibility to determine TVB-N content and WBSF in pork by Fourier transform near infrared (FT-NIR) spectroscopy. Synergy interval partial least square (SI-PLS) algorithm was performed to calibrate regression model. The number of PLS factors and the number of intervals were optimised simultaneously by cross-validation. The performance of the model was evaluated according to two correlation coefficients (R) in calibration and prediction sets. Experimental results showed that the correlations coefficients in the calibration set (Rc) and prediction set (Rp) were achieved as follows: Rc = 0.8398 and Rp = 0.8084 for TVB-N content model; Rc = 0.7533 and Rp = 0.7041 for WBSF model. The overall results demonstrated that NIR spectroscopy combined with SI-PLS could be utilised to determinate TVB-N content and WBSF in pork.  相似文献   

7.
This work is focused on the variable selection in building the partial least squares (PLS) regression model of soluble solids content (SSC) that is used to evaluate quality grading of watermelon. The spectra were obtained by the near infrared (NIR) spectrometer with the device designed for on-line quality grading of watermelon and the spectra of 680–950 nm were adopted to analysis. The variable selection was based on Monte-Carlo uninformative variable elimination (MC-UVE) and genetic algorithm (GA). In comparison of the performances of the full-spectra (680–950 nm) PLS regression model and the feature wavelengths PLS regression model showed that the MC-UVE–GA–PLS model with baseline offset correction combined multiplicative scatter correction (MSC) pretreatment was much better and 14 variables in total were selected. The correlation coefficients between the predicted and actual SSC were 0.885 and 0.845, the root mean square errors were 0.562 °Brix and 0.574 °Brix for calibration and prediction set, respectively. This work can make a great contribution to the research of on-line quality grading for watermelon nondestructively.  相似文献   

8.
Açaí consumption is increasing worldwide because of the growing recognition of its nutritional and therapeutic properties. This product is classified based on its soluble solids content (SS), but the determination of SS in pulp is time consuming, tedious and not suitable for modern food processing plants. As near‐infrared (NIR) systems have been implemented to measure various quality attributes of food products, the objective of this study was to evaluate the feasibility of NIR diffuse reflectance spectroscopy to quantify the SS content of açaí pulp. Partial least squares (PLS) regression models were constructed to predict the SS. An optimum PLS model required one latent variable [principal component (PC)1 = 97%] with a root‐mean‐square error of calibration (RMSEC) of 1.06% for the calibration data set and the root‐mean‐square error of prediction (RMSEP) of 1.03% for internal cross‐validation. External validation using an independent data set showed good performance (RMSEP = 1.33% and Rp2 = 0.82). NIR spectroscopy is a reliable method with which to determine SS in açaí pulp and thereby to classify açaí pulp according to established minimum quality standards.  相似文献   

9.
Visible and near infrared (Vis/NIR) spectroscopy was investigated to determine the soluble solids content (SSC), pH and firmness of different varieties of pears. Two-hundred forty samples (80 for each variety) were selected as sample set. Two-hundred ten pear samples (70 for each variety) were selected randomly for the calibration set, and the remaining 30 samples (10 for each variety) for the validation set. Partial least squares (PLS) and least squares-support vector machine (LS-SVM) with different spectral preprocessing techniques were implemented for calibration models. Different wavelength regions including Vis, NIR and Vis/NIR were compared. It indicated that Vis/NIR (400–1800 nm) was optimal for PLS and LS-SVM models. Then, LS-SVM models were developed with a grid search technique and RBF kernel function. All LS-SVM models outperformed PLS models. Next, effective wavelengths (EWs) were selected according to regression coefficients. The EW-LS-SVM models were developed and a good prediction precision and stability was achieved compared with PLS and LV-LS-SVM models. The correlation coefficient of prediction (rp), root mean square error of prediction (RMSEP) and bias for the best prediction by EW-LS-SVM were 0.9164, 0.2506 and −0.0476 for SSC, 0.8809, 0.0579 and −0.0025 for pH, whereas 0.8912, 0.6247 and −0.2713 for firmness, respectively. The overall results indicated that the regression coefficient was an effective way for the selection of effective wavelengths. LS-SVM was superior to the conventional linear PLS method in predicting SSC, pH and firmness in pears. Therefore, non-linear models may be a better alternative to monitor internal quality of fruits. And the EW-LS-SVM could be very helpful for development of portable instrument or real-time monitoring of the quality of pears.  相似文献   

10.
Visible (VIS) and near infrared (NIR) spectroscopy combined with chemometrics was used in an attempt to classify commercial Riesling wines from different countries (Australia, New Zealand, France and Germany). Commercial Riesling wines (n = 50) were scanned in the VIS and NIR regions (400–2500 nm) in a monochromator instrument, in transmission mode. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and stepwise linear discriminant analysis (SLDA) based on PCA scores were used to classify Riesling wines according to their country of origin. Full cross validation (leave-one-out) was used as the validation method when classification models were developed. PLS-DA models correctly classified 97.5%, 80% and 70.5% of the Australian, New Zealand and European (France and Germany) Riesling wines, respectively. SLDA calibration models correctly classified 86%, 67%, 67% and 87.5% of the Australian, New Zealand, French and German Riesling wines, respectively. These results demonstrated that the VIS and NIR spectra contain information that when used with chemometrics allow discrimination between wines from different countries. To further validate the ability of VIS–NIR to classify white wine samples, a larger sample set will be required.  相似文献   

11.
Fourier transform infrared spectrometer equipped with attenuated total reflection and chemometrics were used to determine added sugar content (ASC), total soluble solids (TSS) and real juice content (RJC) in fresh and commercial mango juice. Sucrose solutions (0-27%), fresh mango juice adulterated with 0-27% sucrose, and two commercial brands were evaluated in wavenumber range of 4000-650 cm−1. Partial least squares (PLS) discrimination and principal component analysis (PCA) were used to classify the samples with or without ASC. PLS and multiple linear regression (MLR) were carried out with and without data treatments. The detection limit for ASC was 3% for samples with low natural TSS, 5% for samples with natural TSS more than 10% and 3.6% for commercial samples. ASC, TSS, and RJC were predicted in the wavenumber range of 1476-912 cm−1 using PLS (multiple correlation coefficient, R = 0.99) and three wavenumbers (1088, 1050, 991 cm−1) using MLR (R = 0.98).  相似文献   

12.
D Cozzolino  I Murray 《LWT》2004,37(4):447-452
Visible (VIS) and near infrared reflectance spectroscopy (NIRS) was used to identify and authenticate different meat muscle species. Samples from beef (n: 100), lamb (n: 140), pork (n: 44) and chicken (n: 48) muscles were homogenised and scanned in the visible (VIS) and near infrared (NIR) region (400-2500 nm) in a monochromator instrument in reflectance. Both Principal Component Analysis (PCA) and dummy partial least-squares regression (PLS) models were developed to identify different meat species. The models correctly classified more than 80% of the meat sample muscles according with the muscle specie. The results showed the potential of VIS and NIR spectra as an objective and rapid method for authentication and identification of meat muscle species.  相似文献   

13.
A non-destructive technique to predict a hardening pericarp disorder in intact mangosteen is proposed by using near infrared (NIR) transmittance spectroscopy in the wavelength range of 660-960 nm. The study found that the spectral features of normal pericarp mangosteen and hardening pericarp mangosteen were different. The averaged spectra and individual spectra of hardening pericarp mangosteen from a calibration set (N = 560) were used to develop classification models, using partial least squares discriminant analysis (PLS-DA). A model based on individual spectra obtained better classification. The overall accuracy of classification for a prediction set (N = 358) was 91%. Out of 179 samples of normal pericarp fruits, 167 were identified correctly, while 159 samples out of 179 samples with hard pericarp were predicted correctly. The results showed that NIR transmittance spectroscopy can be used to predict hard pericarp disorder in intact mangosteen fruit accurately.  相似文献   

14.
Soluble solids content (SSC) and Magness-Taylor flesh firmness (MTf) of “Hayward” kiwifruits were non-destructively assessed by means of a waveguide, that houses the fruit, connected to a sweeper oscillator and a spectrum analyzer. A preliminary test was conducted with a plastic fruit filled with solutions with different SSC values in the frequency range from 2 to 20 GHz (with a step of 1 GHz). The best linear correlations (R2 up to 0.987) between electric signals and SSC solutions in the above described test were found in the 2-3 GHz and 15-16 GHz steps. These steps were used for the dielectric measurements on kiwifruit samples during storage of 28 days at 14 °C. Partial least squares (PLS) regression were then used to predict SSC and MTf from these acquired spectra. In “test set” validation, PLS models showed R2 values up to 0.804 (RMSE = 0.98 °Brix) and 0.806 (RMSE = 8.9 N) for the prediction of SSC and MTf, respectively.  相似文献   

15.
Infrared spectroscopy was investigated to predict components of starch and protein in rice treated with different irradiation doses based on sensitive wavelengths (SWs). Near infrared and mid-infrared regions were compared to determine which one produces the best prediction of components in rice after irradiation. Partial least-squares (PLS) analysis and least-squares-support vector machine (LS-SVM) were implemented for calibration models. The best PLS models were achieved with NIR region for starch and MIR region for protein. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights, and the optimal LS-SVM model was achieved with SWs of 1210–1222, 1315–1330, 1575–1625, 1889–1909 and 2333–2356 nm for starch and SWs of 962–1091, 1232–1298, 1480–1497, 1584–1625 and 2373–2398 cm−1 for protein. It indicated that IR spectroscopy combined with LS-SVM could be applied as a high precision way for the determination of starch and protein in rice after irradiation.  相似文献   

16.
Mid‐infrared spectroscopy (FT‐Mid IR) coupled with multivariate analysis was used to predict clenbuterol in beef meat, liver and kidney. A SIMCA model was also developed to discriminate between pure (beef meat, liver and kidney) and spiked with clenbuterol samples (beef meat‐clenbuterol, liver‐clenbuterol and kidney‐clenbuterol). The best models to predict clenbuterol concentrations were obtained using the partial least squares algorithm (PLS) with a R2 > 0.9 and SEC and standard error of prediction <0.296 and 0.324, respectively. The SIMCA model used to discriminate pure and spiked with clenbuterol samples showed 100% correct classification rate. Methods detection limit was 2 μg kg?1. FT‐Mid IR coupled with chemometrics could be a simple and rapid screening tool for monitoring clenbuterol in beef meat, liver and kidney implicated in food poisoning. This method could be use for screening purposes.  相似文献   

17.
The study focused on application of dielectric spectroscopy to identify the adulteration of olive oil. The dielectric properties of binary mixture of oils were investigated in the frequency range of 101 Hz–1 MHz. A partial least squares (PLS) model was developed and used to verify the concentrations of the adulterant. Furthermore, the principal component analysis (PCA) was used to classify olive oil sample as distinct from other adulterants based on their dielectric spectra. The results showed that the dielectric spectra of binary mixture of olive oil spiked with other oils increased with increasing concentration of soy, corn, canola, sesame, and perilla oils from 0% to 100% (w/w) over the measured frequency range. PLS calibration model showed a good prediction capability for the concentrations of the adulterant. For olive oil adulterated with soy oil, the results showed that the RMS was 0.053, sd(RMS), 0.017 and Q2 value was 0.967. PCA classification plots for all oil samples showed clear performance in the differentiation for the different concentrations of the adulterant. Each of the oil samples could be easily grouped in different clusters using dielectric spectra. From the results obtained in this research, dielectric spectroscopy could be used to discriminate the olive oil adulterated with the different types of the oils at levels of adulteration below 5%.  相似文献   

18.
Two chemometrics, the partial least-squares (PLS) and radial basis function (RBF) network were performed to develop a quantification method for total polysaccharides and triterpenoids in Ganoderma lucidum and Ganoderma atrum from different origins based on near infrared reflectance spectroscopy (NIR). The influences of spectral window and spectral pre-treatments were initially studied in the construction of PLS model. The best result was obtained when the standard normal transformation (SNV) +1st derivative spectrum over 4100–7750 cm−1 was used for the modelling. Then based on each principle, both of the two models were optimised respectively. The final results with high determination coefficient (R2) (higher than 0.973, 0.989 for PLS and RBF, respectively) and low root mean square errors of prediction (RMSEP) (low to 0.1109 and 0.01298 for polysaccharides and triterpenoids, respectively) confirm the good predictability of the two models. The overall results show that NIR spectroscopy combined with chemometrics can be efficiently utilised for accurate analysis of routine chemical compositions in G. lucidum and G. atrum.  相似文献   

19.
Classification of longan fruit bruising using visible spectroscopy   总被引:1,自引:0,他引:1  
This research showed the potential of using visible spectroscopy for classification of non-bruised and bruised longan fruits. The visible spectra of bruised and non-bruised longan fruits were acquired from 400 to 700 nm with 10 nm resolution by the spectrophotometer. The principal component analysis (PCA), Partial Least Square Discriminant Analysis (PLS-DA) and Soft Independent Modeling of Class Analogy (SIMCA) were used to develop classification models. The Partial Least Square Discriminant Analogy (PLS-DA) showed better classification accuracy than SIMCA with 100% correctness. The result was found to be helpful for the application in the industry for on-line and portable application.  相似文献   

20.
Two unsupervised pattern recognition techniques such as stepwise linear discriminant analysis (SLDA) and Soft Independent Modeling of Class Analogy (SIMCA) were used to classify tomato samples in categories corresponding to the cultivation areas. The same approach was used for triple concentrated pastes for discrimination between two different Italian production areas. Accordingly, HS-SPME-GC-MS with 85 ??m carboxen/polydimethylsiloxane fiber was used for the determination of the volatile fraction in tomatoes and triple concentrate tomato pastes samples. Ethyl isobututanoate was used as internal standard for semiquantitative analysis and the concentration data (??g/kg) of 38 compounds for tomatoes and of 32 compounds for triple concentrates were used in following chemometric analysis. Sixteen and three variables were selected by forward stepwise LDA for tomatoes and pastes, respectively. SLDA and SIMCA models showed respectively 96% and 94% in term of prediction ability for tomatoes. The two supervised techniques provided 100% and 97% in prediction of the production areas of tomato pastes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号