首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文中对柴油-含水乙醇乳化燃料液滴的微爆现象进行了研究.利用修正的微爆数学模型,计算得到含水乙醇乳化燃料和水的微爆温度边界条件,同时进行了微爆温度观测试验,将试验结果与理论计算结果进行对比,验证了模型的正确性.对柴油-含水乙醇乳化燃料液滴蒸发过程和微爆现象进行了观察试验.结果表明:均匀成核通常会导致典型的微爆,而异相成核...  相似文献   

2.
In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.  相似文献   

3.
用彩色数码相机拍照结合图像处理的诊断方法研究了铝、硼纳米颗粒的燃烧特性和机理,得到了铝、硼纳米颗粒火焰的形貌特征、温度分布及着火时间等。燃烧实验中使用多元扩散平焰燃烧器(Hencken燃烧器)提供可控的高温环境,利用固体颗粒乙醇溶解-超声分散-雾化-干燥的给粉方式产生高分散的纳米气溶胶,并在不同工况下对纳米颗粒火焰进行拍照。从所得彩色图片中提取红、绿、蓝三色通道信号,结合普朗克辐射定律获得颗粒的辐射强度信息及温度信息。结果表明:不同环境温度会导致不同的颗粒变温历程。高温环境下铝、硼颗粒经着火后颗粒温度逐渐下降,而低温下由于氧化层多晶相变的影响铝颗粒温度先缓慢升高而后缓慢下降,硼颗粒温度则几乎维持恒定。硼颗粒着火过程可分为着火延时和着火两个阶段,通过火焰图像定义了相应的时间,测得的硼颗粒着火延迟时间为1.17~2.98ms,着火时间为0.31~0.85ms。  相似文献   

4.
When a column of droplets freely falling from an ultrasonic atomizer was ignited behind a reflected shock, no ignition occurred at a temperature below 1100 K, even if the pressure was as high as IMPa. Although, a higher temperature condition ensured ignition, no luminous flame was observable by high-speed photography, and even if a luminous flame lump appeared at an extremely high temperature, it disappeared without spreading over the entire column of droplets in this case. It is known however that, if a fuel is injected into a diesel cylinder or an electric furnace, ignition occurs even at a temperature as low as 650 K with a luminous flame spreading over the entire spray. These differences could be caused by the effects of turbulent mixing between fuel droplets and hot air, in fact, turbulence-generating rods were placed on the upstream side of the spray column. Experimental results indicates that the ignition limit was lowered to 840 K, and the ignition delay period was decreased by increasing the intensity of turbulence. Furthermore, the light emission of the flame was intensified, and normal spray combustion was maintained in the low-temperature atmosphere after the shock tube ceased its operation.  相似文献   

5.
Effects of injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure, and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details inside model nozzle and real nozzle were also investigated both experimentally and numerically. For the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.  相似文献   

6.
A simplified analytical modeling of single aluminum particle combustion was conducted. Ignition and quasi-steady combustion (QSC) were separately formulated and integrated. Both the heat transfer from the hot ambient gas and the enthalpy of heterogeneous surface reaction (HSR) served to cause the particle ignition. Conservation equations were solved for QSC parameters in conjunction with conserved scalar formulation and Shvab-Zeldovich function. Limit temperature postulate was formulated by a sink term pertinent to the dissociation of the aluminum oxide near the flame zone. Effective latent heat of vaporization was modified for the thermal radiation. Ignition and QSC of the aluminum particle were predicted and discussed with emphasis on the effect of the aluminum oxide and variable properties. The model was validated with the experiments regarding ignition delay time, burning rate, residue particle size, flame temperature, QSC duration, and stand-off distance of the envelop flame. Agreement was satisfactory and the prediction errors were limited within 10%.  相似文献   

7.
设计并研制了一种定容燃烧弹试验装置,用于对柴油在甲醇/空气预混均质混合气中燃烧特性的基础研究。介绍了该试验装置的各子系统的原理、结构及特点。定容燃烧弹试验结果表明:甲醇抑制了柴油的着火燃烧,随着甲醇/空气混合气浓度的增大,燃烧火焰变暗,碳烟生成受到抑制。与空气热氛围相比,甲醇/空气混合气氛围延长了柴油的滞燃期,加长了火焰的浮起长度。火焰稳定后,甲醇氛围中火焰的浮起长度随时间的变化比在纯空气氛围中大。  相似文献   

8.
The effects of fuel/air equivalence ratio and CO2 concentration in fuel/air charge on the ignition process of gasoline and diesel-like fuel (n-heptane) blends on a rapid compression machine are investigated in this study. Results showed that the effects of equivalence ratio on ignition delays of two ignition stages are varied. As equivalence ratio increases from 0.3 to 0.5, the first stage ignition delay slightly increases because the increased equivalence ratio improves the mixture heat capacity, reducing the in-cylinder temperature and weakening the low-temperature heat release process of the fuel. The second stage ignition delay is shortened with the increased equivalence ratio because increased fuel concentration facilitates mixture reactivity. CO2 addition to the cylinder charge can effectively reduce the peak cylinder pressure and the two stage pressure rise rates, as well as extend the durations of ignition delays of two ignition stages.  相似文献   

9.
An experimental apparatuses and measuring system have been made to obtain characteristics connected with evaporation, ignition delay, combustion of a freely falling liquid fuel droplet in high temperature and high pressure gas stream. In this study some systematic experiments were performed to test the utility of the system. The newly devised apparatus was ensured reliability and utility from the tentative experimental results.  相似文献   

10.

This study investigated the spray and combustion characteristics of a direct injection spark ignition type system based on the changes in the temperature of the blended fuel (with bio-ethanol and gasoline). The test was performed in a chamber with a constant volume. The diameter and width of the chamber were 86 mm and 39 mm, respectively. The bio-ethanol test fuel was blended at volume ratios of 0 %, 10 %, 20 % and 100 %. The temperature of the fuel was set as −7, 25 and 35 °C. The fuel injection pressure and ambient pressure were set as 4.5 and 0.5 MPa, respectively. The shape and characteristics of the spray were investigated through a spray experiment. The increase in the fuel temperature changed its density and viscosity; this in turn increased spray penetration and spray area and increased the bio-ethanol blending ratio. The combustion visualization and experimental analysis indicated that the decrease in the fuel temperature and the increase in the bio-ethanol blending ratio led to the high viscosity and low heating value. This resulted in an increase in the ignition delay and a decrease in the rate of heat release. It is necessary to adjust the spray strategy and ignition timing to adopt bio-ethanol blended fuel as an alternative fuel.

  相似文献   

11.
The development of a laser-shock technique for dispersing Al metal fuel particles at velocities approaching those expected in a detonating explosive is discussed. The technique is described in detail by quantifying how air drag affects the temporal variation of the velocity of the dispersed particle plume. The effect of particle size is incorporated by examining various poly-dispersed commercial Al powders at different dispersion velocities (390-630 m/s). The technique is finally tested within a preliminary study of particle ignition delay and burn time, where the effect of velocity is highlighted for different particle sizes. It was found that plume velocity exhibits a modified exponential temporal profile, where smaller particles are more susceptible to air drag than larger ones. Moreover, larger particles exhibit longer ignition delays and burn times than smaller ones. The velocity of a particle was found to significantly affect its ignition delay, burn time, and combustion temperature, especially for particles in the diffusion-controlled regime. Shorter ignition delays and burn times and lower temperatures were observed at higher particle velocities. The utility of this technique as a combustion screening test for future, novel fuels is discussed.  相似文献   

12.
通过试验手段对比分析了预燃室射流点火模式及火花塞点火模式 (SI)对燃烧性能的影响,结果表明:SI点火模式的发动机受高负荷爆震的限制,仅在中等负荷达到最佳的油耗率和热效率。压缩比(CR)的增加仅在中小负荷对油耗率和热效率有改善效果;相比于SI点火模式,预燃室射流点火模式可实现更快的燃烧速度和火焰传播速度,对SI发动机的爆震有较好的抑制效果,在中等负荷具有更低的油耗率和更高的热效率,但在低负荷及高负荷阶段,油耗率和热效率恶化;采用预燃室射流点火模式,能有效增加缸内燃烧速率,减轻CA50推迟对油耗率恶化的效果,通过提高压缩比实现降低油耗率的潜力和效果更好。  相似文献   

13.

This study was conducted to improve the theoretical prediction of the burning characteristics of an n-heptane droplet by comparing them with experimental results. To achieve this, numerical approaches were conducted by assuming that the droplet combustion can be described by both quasi-steady behavior for the region between the droplet surface and the flame interface, and transient behavior for the region between the flame interface and ambient surrounding. Comparisons were considered for droplet diameter (d t ), flame diameter (d f ), flame standoff ratio (FSR), and viscous drag induced fluxes which are Stefan flux and thermophoretic flux for various initial droplet diameter (d 0 ) and oxygen (O 2 ) concentration conditions. It was revealed that the flame diameter (d f ) and flame standoff ratio (FSR) initially increase dramatically and approach quasi-steady behavior within the observation period, and the flame standoff ratio (FSR) increases a little with the initial droplet diameter (d 0 ) both experimentally and theoretically. The value of flame diameter (d f ) decreases from its maximum value when oxygen (O 2 ) concentration is increased from a value of 18% to 40%. The burning rate (K) constant becomes higher as the oxygen (O 2 ) concentration increases since the increase of oxygen (O 2 ) concentration produces a higher maximum flame temperature (d f ) which enhances the effective thermo-physical properties of the gas-phase bounded by droplet and flame front.

  相似文献   

14.
Swirl effect on the spray characteristics of a twin-fluid jet   总被引:1,自引:0,他引:1  
In the liquid fuel combustion chamber, employed fuel must be atomized before being injected into the combustion zone. Therefore, the complete fuel atomization is the most important condition for the combustion efficiency. The atomization quality strongly affects the combustion performance, exhaust pollutant emissions, and flame stability. Therefore, the whole process of spray atomization is of fundamental significance. During past decades many experimental and theoretical studies in this field have been carried out and some improved results have been obtained. Two-phase atomizers, having a variety of advantages such as spray uniformity, appreciable atomization, and smaller SMD with an increase of ambient gas, are considered to be applied in various industrial processes. The purpose of present study is to investigate the mean velocity, turbulence shear stress, turbulence intensity, mean drop size distribution, and droplet data rate in a two-phase swirling jet using PDPA systems.  相似文献   

15.
两相脉冲爆震发动机的燃油喷射、混合及其雾化研究   总被引:7,自引:1,他引:6  
两相爆震燃烧近来得到了广泛的重视和关注,但在它走向应用之前仍有很多问题需要解决。燃油的喷射、混合和雾化对两相爆震燃烧的影响就是其中之一。本文利用激光喷雾测量仪分别就直射喷嘴与气动喷嘴研究了汽油的喷射雾化与混合雾化,得到了汽油的雾化粒度与供油量、供气量间的关系。利用CFD程序对混合室中油、气的混合特性进行了模拟,结果与试验结果非常吻合。结合脉冲爆震发动机模型机多循环爆震试验,发现汽油的粒度大小对脉冲爆震模型机的油气当量比、燃油填充比有显著的影响。  相似文献   

16.
蔡海亮  宋笔锋  裴扬 《机电一体化》2013,19(2):42-46,58
为了确定射弹击穿飞机油箱后附近干舱的引燃和燃烧,需要对燃油通过穿孔泄露过程中燃油的泄露质量及雾化液滴的数目和尺寸进行定量计算分析。该文建立了用于模拟高速射弹击穿油箱后燃油泄露过程的解析模型,给出了燃油初始泄露速度的定量计算方法,利用最大熵原理和质量守恒定律,推出了弹丸撞击条件下泄露燃油液滴尺寸数目分布函数和索特尔平均直径SMD的计算公式,并采用Harmon液滴索特尔平均直径经验计算公式定量计算泄露燃油的平均直径。研究结果表明燃油的初始泄露速度随射弹速度的增加而呈线性增加,液滴索特尔平均直径随穿孔直径的增加而增加,随射弹速度的增加而呈线性减小。研究结果为下一步进行油箱附近干舱引燃和燃烧提供理论基础。  相似文献   

17.
Coal-water slurry(CWS) engine tests designed to investigate the ignition and combustion processes of the fuel are described in this paper. The effects of three different parameters, namely, (a) needle lift pressure, (b) fuel injection timing, and (c) percent coal loading in the slurry fuel are studied in detail. Successful operation of the engine using the coal water slurry required modifications to the engine and support systems. The physical trends of combustion under single parametric variations are presented in terms of the cylinder pressure, heat release rates, and cumulative heat release curves. The major conclusions of the work include: (a) higher needle lift pressures led to shorter ignition delay times for the CWS fuel: (b) the ignition delay time of the advanced injection start was little different from that of retarded fuel injection timing due to poor atomization: and (c) dilution of the slurry with water can significantly affect the combustion processes and ease of fuel handling.  相似文献   

18.
This paper describes the ignition and combustion characteristics of a gas turbine slinger combustor with rotating fuel injection system. An ignition test was performed under various airflow, temperature and pressure conditions with fuel nozzle rotational speed. From the test, there are two major factors influencing the ignition limits: the rotational speed of the fuel nozzle, and the mass flow parameter. Better ignition capability could be attained through increasing the rotational speed and air mass flow. From the spray visualization and drop size measurement, it was verified that there is a strong correlation between ignition performance and drop size distribution. Also, we performed a combustion test to determine the effects of rotational speed by measuring gas temperature and emission. The combustion efficiency was smoothly enhanced from 99% to 99.6% with increasing rotational speed. The measured pattern factor was 15% and profile factor was 3%.  相似文献   

19.
A transient one-dimensional film boiling model was developed to study the film boiling dynamics that would occur when a hot spherical droplet is immersed in cold liquid. The focus of this study was to investigate the effects of noncondensible gas, liquid temperature, droplet temperature, and ambient pressure on film boiling during the initial growth phase. The results indicate that the film generally stablizes with more noncondensible gas present, higher liquid and lower droplet temperature. Small ambient pressurizations cause violent fluctuations of the film pressure while higher ambient pressure suppresses these oscillations. These qualitative behavior of film boiling around hot spherical droplet suggests that the spontaneous triggering of small-scale single droplet vapor explosions is led by the oscillatory characteristics of vapor film in its initial growth phase.  相似文献   

20.
Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH* chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results. This paper was recommended for publication in revised form by Associate Editor Ohchae Kwon Gyung-Min Choi studied the areas of combustion engineering, heat recirculating combustion, and solid fuel gasification, receiving his Ph.D. degree in engineering from Osaka University in 2001. He served as a researcher at Japan Aerospace Exploration Agency and is now an associate professor in the School of Mechanical Engineering at Pusan National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号