首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli DNA polymerase III holoenzyme contains 10 different subunits which assort into three functional components: a core catalytic unit containing DNA polymerase activity, the beta sliding clamp that encircles DNA for processive replication, and a multisubunit clamp loader apparatus called gamma complex that uses ATP to assemble the beta clamp onto DNA. We examine here the function of the psi subunit of the gamma complex clamp loader. Omission of psi from the holoenzyme prevents contact with single-stranded DNA-binding protein (SSB) and lowers the efficiency of clamp loading and chain elongation under conditions of elevated salt. We also show that the product of a classic point mutant of SSB, SSB-113, lacks strong affinity for psi and is defective in promoting clamp loading and processive replication at elevated ionic strength. SSB-113 carries a single amino acid replacement at the penultimate residue of the C-terminus, indicating the C-terminus as a site of interaction with psi. Indeed, a peptide of the 15 C-terminal residues of SSB is sufficient to bind to psi. These results establish a role for the psi subunit in contacting SSB, thus enhancing the clamp loading and processivity of synthesis of the holoenzyme, presumably by helping to localize the holoenzyme to sites of SSB-coated ssDNA.  相似文献   

2.
Most biological organisms rely upon a DNA polymerase holoenzyme for processive DNA replication. The bacteriophage T4 DNA polymerase holoenzyme is composed of the polymerase enzyme and a clamp protein (the 45 protein), which functions as a processivity factor by strengthening the interaction between DNA and the holoenzyme. The 45 protein must be loaded onto DNA by a clamp loader ATPase complex (the 44/62 complex). In this paper, the order of events leading to holoenzyme formation is investigated using a combination of rapid-quench and stopped-flow fluorescence spectroscopy kinetic methods. A rapid-quench strand displacement assay in which the order of holoenzyme component addition is varied provided data indicating that the rate-limiting step in holoenzyme assembly is associated with the clamp loading process. Pre-steady-state analysis of the clamp loader ATPase activity demonstrated that the four bound ATP molecules are hydrolyzed stepwise during the clamp loading process in groups of two. Clamp loading was examined with stopped-flow fluorescence spectroscopy from the perspective of the clamp itself, using a site-specific, fluorescently labeled 45 protein. A mechanism for T4 DNA polymerase holoenzyme assembly is proposed in which the 45 protein interacts with the 44/62 complex leading to the hydrolysis of 2 equiv of ATP, and upon contacting DNA, the remaining two ATP molecules bound to the 44/62 complex are hydrolyzed. Once all four ATP molecules are hydrolyzed, the 45 protein is poised on DNA for association with the polymerase to form the holoenzyme.  相似文献   

3.
Human replication factor C (hRFC) is a five-subunit protein complex (p140, p40, p38, p37, and p36) that acts to catalytically load proliferating cell nuclear antigen onto DNA, where it recruits DNA polymerase delta or epsilon to the primer terminus at the expense of ATP, leading to processive DNA synthesis. We have previously shown that a subcomplex of hRFC consisting of three subunits (p40, p37, and p36) contained DNA-dependent ATPase activity. However, it is not clear which subunit(s) hydrolyzes ATP, as all five subunits include potential ATP binding sites. In this report, we introduced point mutations in the putative ATP-binding sequences of each hRFC subunit and examined the properties of the resulting mutant hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in any one of the ATP binding sites of the p36, p37, p40, or p140 subunits markedly reduced replication activity of the hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in the ATP binding site of the p38 subunit did not alter the replication activity of hRFC. These findings indicate that the replication activity of hRFC is dependent on efficient ATP hydrolysis contributed to by the action of four hRFC subunits.  相似文献   

4.
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction.  相似文献   

5.
Nicotinic acetylcholine receptors (AChRs) are activated by ACh binding to two sites located on different alpha subunits. The two alpha subunits, alpha gamma and alpha delta, are distinguished by their interface with gamma and delta subunits. We have characterized the formation of the ACh binding sites and found, contrary to the current model, that the sites form at different times and in a set order. The first site forms on alpha gamma subunits during the process of subunit assembly. Our data are consistent with the appearance of this site on alpha beta gamma delta subunit tetramers soon after the site for the competitive antagonist alpha-bungarotoxin has formed and delta subunits have assembled with alpha beta gamma trimers. The second site is located on alpha delta subunits and forms after AChR subunits have assembled into alpha2 beta gamma delta pentamers. By determining the order in which the ACh binding sites form, we have also identified the sites in which the delta and second alpha subunits associate during subunit assembly.  相似文献   

6.
Run-down of L-type Ca2+ channels in CHO cells stably expressing alpha 1c, alpha 1c beta 1a, or alpha 1c beta 1a alpha 2 delta gamma subunits was studied using the patch-clamp technique (single channel recording). The channel activity (NPo) of alpha 1c channels was increased 4- and 8-fold by coexpression with beta 1a and beta 1a alpha 2 delta gamma, respectively. When membranes containing channels composed of different subunits were excised into basic internal solution, the channel activity exhibited run-down, the time-course of which was independent of the subunit composition. The run-down was restored by the application of calpastatin (or calpastatin contained in cytoplasmic P-fraction) + H-fraction (a high molecular mass fraction of bovine cardiac cytoplasm) + 3 mM ATP, which has been shown to reverse the run-down in native Ca2+ channels in the guinea-pig heart. The restoration level was 64.7, 63.5, and 66.4% for channels composed of alpha 1c, alpha 1c beta 1a, and alpha 1c beta 1a alpha 2 delta gamma, respectively, and was thus also independent of the subunit composition. We conclude that run-down of L-type Ca2+ channels occurs via the alpha 1 subunit and that the cytoplasmic factors maintaining Ca2+ channel activity act on the alpha 1 subunit.  相似文献   

7.
The F1-ATPase is a multimeric enzyme (alpha3 beta3 gamma delta epsilon) primarily responsible for the synthesis of ATP under aerobic conditions. The entire coding region of each of the genes was deleted separately in yeast, providing five null mutant strains. Strains with a deletion in the genes encoding alpha-, beta-, gamma- or delta-subunits were unable to grow, while the strain with a null mutation in epsilon was able to grow slowly on medium containing glycerol as the carbon source. In addition, strains with a null mutation in gamma or delta became 100% rho0/rho- and the strain with the null mutation in gamma grew much more slowly on medium containing glucose. These additional phenotypes were not observed in strains with the double mutations: Delta alpha Delta gamma, Delta beta Delta gamma, Deltaatp11 Delta gamma, Delta alpha Delta delta, Delta beta Delta delta or Deltaatp11 Delta delta. These results indicate that epsilon is not an essential component of the ATP synthase and that mutations in the genes encoding the alpha- and beta-subunits and in ATP11 are epistatic to null mutations in the genes encoding the gamma- and delta-subunits. These data suggest that the propensity to form rho0/rho- mutations in the gamma and delta null deletion mutant stains and the slow growing phenotypes of the null gamma mutant strain are due to the assembly of F1 deficient in the corresponding subunit. These results have profound implications for the physiology of normal cells.  相似文献   

8.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

9.
10.
The two binding sites in the pentameric nicotinic acetylcholine receptor of subunit composition alpha2 beta gamma delta are formed by nonequivalent alpha-gamma and alpha-delta subunit interfaces, which produce site selectivity in the binding of agonists and antagonists. We show by sedimentation analysis that 125I-alpha-conotoxin M1 binds with high affinity to the alpha-delta subunit dimers, but not to alpha-gamma dimers, nor to alpha, gamma, and delta monomers, a finding consistent with alpha-conotoxin M1 selectivity for the alpha delta interface in the intact receptor measured by competition against alpha-bungarotoxin binding. We also extend previous identification of alpha-conotoxin M1 determinants in the gamma and delta subunits to the alpha subunit interface by mutagenesis of conserved residues in the alpha subunit. Most mutations of the alpha subunit affect affinity similarly at the two sites, but Tyr93Phe, Val188Lys, Tyr190Thr, Tyr198Thr, and Asp152Asn affect affinity in a site-selective manner. Mutant cycle analysis reveals only weak or no interactions between mutant alpha and non-alpha subunits, indicating that side chains of the alpha subunit do not interact with those of the gamma or delta subunits in stabilizing alpha-conotoxin M1. The overall findings suggest different binding configurations of alpha-conotoxin M1 at the alpha-delta and alpha-gamma binding interfaces.  相似文献   

11.
12.
The catalytic portion of the chloroplast ATP synthase (CF1) is structurally asymmetric. Asymmetry of the otherwise symmetrical alpha3beta3 heterohexamer is induced by the presence of tightly bound nucleotides and interactions with the single-copy, smaller subunits. Lucifer Yellow vinyl sulfone (4-amino-N-[3-(vinylsulfonyl)phenyl]naphthalimide-3,6-disulfonic acid) rapidly and covalently binds to lysine 378 on one alpha subunit [Nalin, C. M., Snyder, B., and McCarty, R. E., (1985) Biochemistry 24, 2318-2324] [Shapiro, A. B. (1991) Ph.D. Thesis, Cornell University, Ithaca, NY). The asymmetrical binding of Lucifer Yellow to CF1 provides a method to investigate the cause of asymmetry in the alpha subunits. The reaction of CF1 with Lucifer Yellow was monitored by total fluorescence of bound Lucifer Yellow as well as by quantitative determination of Lucifer Yellow bound to the tryptic peptide that contains lysine 378 of the alpha subunit. The total binding of Lucifer Yellow to CF1 was not affected by the presence of tightly bound nucleotides or nucleotide in the medium. Neither the total binding of Lucifer Yellow to CF1 nor the reaction of alpha-lysine 378 with Lucifer Yellow was changed by the removal of the epsilon subunit, the delta subunit, or both subunits. The extent of incorporation of Lucifer Yellow into lysine 378 of the alpha subunit in (alphabeta)n was about three times that of Lucifer Yellow incorporation into CF1. Reconstitution of (alphabeta)n with gamma restored the binding of one Lucifer Yellow per alpha3beta3gamma. Therefore, the interactions between gamma and the alphabeta heterohexamer are important in conferring asymmetry to the alpha subunits of CF1.  相似文献   

13.
BACKGROUND: The gamma-aminobutyric acid (GABA)A receptor/chloride channel has a broad-spectrum anesthetic sensitivity and is a key regulator of arousal. Each receptor/channel complex is an assembly of five protein subunits. Six subunit classes have been identified, each containing one to six members; many combinations are expressed throughout the brain. Benzodiazepines and intravenous anesthetic agents are clearly subunit dependent, but the literature to date suggests that volatile anesthetics are not. The physiological role of the delta subunit remains enigmatic, and it has not been examined as a determinant of anesthetic sensitivity. METHODS: Combinations of GABA(A) receptor subunit cDNAs were injected into Xenopus laevis oocytes: alpha1beta1, alpha1beta1gamma2L, alpha1beta1delta, and alpha1beta1gamma2Ldelta. Expression of functional ion channels with distinct signalling and pharmacologic properties was demonstrated within 1-4 days by established electrophysiological methods. RESULTS: Co-expression of the delta subunit produced changes in receptor affinity; current density; and the modulatory efficacy of diazepam, zinc, and lanthanum; it also produced subtle changes in the rate of desensitization in response to GABA. Isoflurane enhanced GABA-induced responses from all combinations: alphabeta delta (>10-fold) > alphabeta > alphabeta gamma > or = alphabeta gammadelta (approximately 5-fold). Dose-response plots were bell shaped. Compared with alphabeta gamma receptors (EC50 = 225 microM), both alphabeta delta (EC50 = 372 microM) and alphabeta gammadelta (EC50 = 399 microM) had a reduced affinity for isoflurane. Isoflurane (at a concentration close to the EC50 for each subunit) increased the affinity of GABA for its receptor but depressed the maximal response (alphabeta gamma and alphabeta gammadelta). In contrast, the small currents through alphabeta delta receptors were enhanced, even at saturating agonist concentrations. CONCLUSIONS: Delta subunit expression alters GABA(A) receptor function but is not an absolute determinant of anesthetic sensitivity.  相似文献   

14.
F1F0-ATP synthases utilize protein conformational changes induced by a transmembrane proton gradient to synthesize ATP. The allosteric cooperativity of these multisubunit enzymes presumably requires numerous protein-protein interactions within the enzyme complex. To correlate known in vitro changes in subunit structure with in vivo allosteric interactions, we introduced the beta subunit of spinach chloroplast coupling factor 1 ATP into a bacterial F1 ATP synthase. A cloned atpB gene, encoding the complete chloroplast beta subunit, complemented a chromosomal deletion of the cognate uncD gene in Escherichia coli and was incorporated into a functional hybrid F1 ATP synthase. The cysteine residue at position 63 in chloroplast beta is known to be located at the interface between alpha and beta subunits and to be conformationally coupled, in vitro, to the nucleotide binding site > 40 A away. Enlarging the side chain of chloroplast coupling factor 1 beta residue 63 from Cys to Trp blocked ATP synthesis in vivo without significantly impairing ATPase activity or ADP binding in vitro. The in vivo coupling of nucleotide binding at catalytic sites to transmembrane proton movement may thus involve an interaction, via conformational changes, between the amino-terminal domains of the alpha and beta subunits.  相似文献   

15.
The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis.  相似文献   

16.
Cerebellar granule cells express six GABAA receptor subunits abundantly (alpha1, alpha6, beta2, beta3, gamma2, and delta) and assemble various pentameric receptor subtypes with unknown subunit compositions; however, the rules guiding receptor subunit assembly are unclear. Here, removal of intact alpha6 protein from cerebellar granule cells allowed perturbations in other subunit levels to be studied. Exon 8 of the mouse alpha6 subunit gene was disrupted by homologous recombination. In alpha6 -/- granule cells, the delta subunit was selectively degraded as seen by immunoprecipitation, immunocytochemistry, and immunoblot analysis with delta subunit-specific antibodies. The delta subunit mRNA was present at wild-type levels in the mutant granule cells, indicating a post-translational loss of the delta subunit. These results provide genetic evidence for a specific association between the alpha6 and delta subunits. Because in alpha6 -/- neurons the remaining alpha1, beta2/3, and gamma2 subunits cannot rescue the delta subunit, certain potential subunit combinations may not be found in wild-type cells.  相似文献   

17.
The beta subunit of DNA polymerase III is essential for negative regulation of the initiator protein, DnaA. DnaA inactivation occurs through accelerated hydrolysis of ATP bound to DnaA; the resulting ADP-DnaA fails to initiate replication. The ability of beta subunit to promote DnaA inactivation depends on its assembly as a sliding clamp on DNA and must be accompanied by a partially purified factor, IdaB protein. DnaA inactivation in the presence of IdaB and DNA polymerase III is further stimulated by DNA synthesis, indicating close linkage between initiator inactivation and replication. In vivo, DnaA predominantly takes on the ADP form in a beta subunit-dependent manner. Thus, the initiator is negatively regulated by action of the replicase, a mechanism that may be key to effective control of the replication cycle.  相似文献   

18.
The following amino acids of the Xenopus laevis beta subunit of protein kinase CK2 (casein kinase 2) were changed to alanine: Pro-58 (beta P-->A); Asp-59 and Glu-60 and Glu-61 (beta DEE-->AAA); His-151-153 (beta HHH-->AAA). The last 37 amino acids of the carboxyl end were deleted (beta delta 179-215). Stimulation of CK2 alpha catalytic subunit activity was measured with casein as substrate and the following relative activities were observed: beta P-->A > beta DEE-->AAA > beta WT > beta HHH-->AAA > beta delta 179-215. The beta DEE-->AAA and beta P-->A were similar to beta WT in reducing CD2 alpha binding to DNA but beta delta 179-215 was less active. The results indicate that both Pro-58 and the surrounding acidic cluster play roles in dampening the activation of CK2 alpha and that the carboxyl end of beta is involved in the interaction with CK2 alpha.  相似文献   

19.
The AMP-activated protein kinase is a heterotrimeric enzyme, important in cellular adaptation to the stress of nutrient starvation, hypoxia, increased ATP utilization, or heat shock. This mammalian enzyme is composed of a catalytic alpha subunit and noncatalytic beta and gamma subunits and is a member of a larger protein kinase family that includes the SNF1 kinase of Saccharomyces cerevisiae. In the present study, we have identified by truncation and site-directed mutagenesis several functional domains of the alpha1 catalytic subunit, which modulate its activity, subunit association, and protein turnover. C-terminal truncation of the 548-amino acid (aa) wild-type alpha1 protein to aa 312 or 392 abolishes the binding of the beta/gamma subunits and dramatically increases protein expression. The full-length wild-type alpha1 subunit is only minimally active in the absence of co-expressed beta/gamma, and alpha1(1-392) likewise has little activity. Further truncation to aa 312, however, is associated with a large increase in enzyme specific activity, thus revealing an autoinhibitory sequence between aa 313 and 392. alpha-1(1-312) still requires the phosphorylation of the activation loop Thr-172 for enzyme activity, yet is now independent of the allosteric activator, AMP. The increased levels of protein expression on transient transfection of either truncated alpha subunit cDNA are because of a decrease in enzyme turnover by pulse-chase analysis. Taken together, these data indicate that the alpha1 subunit of AMP-activated protein kinase contains several features that determine enzyme activity and stability. A constitutively active form of the kinase that does not require participation by the noncatalytic subunits provides a unique reagent for exploring the functions of AMP-activated protein kinase.  相似文献   

20.
The heterotrimeric G proteins are often regarded functionally as a heterodimer, consisting of a guanine nucleotide-binding alpha subunit and a beta gamma subunit complex. Since the tightly associated beta gamma subunit complex can be separated only under denaturing conditions, studies aimed at determining the individual contributions of the beta and gamma subunits in terms of binding to the various alpha subunits, interacting with receptors, and regulating effectors, have not been possible. To circumvent this problem, we have used baculovirus-infected cells to direct the individual expression of the beta 1 and gamma 2 subunits. Application of extracts from baculovirus-infected cells to an alpha subunit of G protein (G(o) alpha)-affinity matrix resulted in the selective retention and AMF-specific elution of the expressed gamma 2 subunit, but not the expressed beta 1 subunit. Overall, these and other data provide the first evidence of a direct association between the gamma and alpha subunits, which is dependent on prenylation of gamma. The apparent direct association between the gamma and alpha subunits was further probed by limited trypsin proteolysis. Upon addition of trypsin, the G(o) alpha subunit was rapidly cleaved to a 24-kDa fragment. However, in the presence of the purified gamma 2 subunit, trypsin cleavage of the G(o) alpha subunit was completely prevented. This demonstration of a direct association between the gamma and alpha subunits is particularly intriguing in light of the increasingly large number of known alpha, beta, and gamma subunits, which raises important questions regarding the assembly of these subunits into functionally distinct G proteins. Thus, a direct association between the gamma and alpha subunits, which exhibit the greatest structural diversity, may provide the basis for the selective assembly of these subunits into G proteins with functional diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号