首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin-film silicon solar cells on mullite substrates   总被引:1,自引:0,他引:1  
Here we review the different methods used to create thin-film silicon solar cells on the most suitable ceramic substrates, namely alumina and mullite. The chemical vapor deposition (CVD) process on bare ceramics, the CVD on glassy layers (CVD-OGL) process, and the aluminum-induced crystallization (AIC) technique are reported and compared in terms of grain size, grain distribution and crystallographic orientation. The electrical quality of such layers was investigated through their open-circuit voltage before and after hydrogenation. Values up to 410 mV were measured on n+p mesa cell structures on ceramics.  相似文献   

2.
High-efficiency silicon space solar cells   总被引:1,自引:0,他引:1  
SHARP's activities on Si solar cells developments and features of Si solar cells for space use in comparison with GaAs solar cells are presented. Two types of high-efficiency silicon solar cells and the same kinds of high-efficiency solar cells with integrated bypass function (IBF cells) were developed and qualified for space applications. The NRS/LBSF cells and NRS/BSF cells showed an average of 18% and 17% efficiencies, respectively, at AMO and 28°C conditions. The IBF cells have P+N+ diodes on the front surface to protect itself from reverse voltage due to shadowing. The designs and features of these solar cells are presented. The radiation tests results of these solar cells are also presented. The NRS/BSF cells showed lower degradation rate compared to conventional BSFR cells with the same thickness (100 μm). But the NRS/LBSF cells showed a higher degradation rate than the BSFR cells. The IBF cells showed almost the same radiation characteristics as the same kinds of cells without IBF. The results of radiation tests on these high-efficiency solar cells and the discussions about the radiation characteristics of them are presented. In the last section, the future silicon solar cell development plan is discussed.  相似文献   

3.
Development of flexible and lightweight solar cells is interesting for terrestrial and space applications that require a very high specific power (kW/kg) and flexibility for curved shaping or rolling. Flexible CdTe/CdS solar cells of 11% efficiency in superstrate and 7.3% efficiency in substrate configurations have been developed with a “lift-off” approach. However, roll-to-roll manufacturing is desired in future.Therefore, flexible superstrate solar cells were directly grown on commercially available 10 μm thin polyimide (Upilex™) foils. A process for the deposition of ITO (front contact) has been developed to have a stable front contact on the Upilex™ foil. Post-deposition annealing treatments of the ITO/polyimide stacks bring a significant stability to the front contact, having almost the same sheet resistance at the beginning and at the end of the cell fabrication process. Solar cells with AM1.5 efficiency of 11.4% on Upilex™ foils (highest efficiency recorded for flexible CdTe cell) have been developed. A comparison of the cells prepared on different polyimides is presented.  相似文献   

4.
Recently, a substantially simplified PERC silicon solar cell has been developed at ISFH with independently confirmed 1-sun efficiencies of up to 20.0%. This paper describes the details of the relatively simple cell fabrication process and experimentally characterizes the new cells. The simplified design involves reflection control by means of random pyramids, the direct evaporation of the front metal grid onto the random pyramids, elimination of the need for nontextured areas underneath the contact grid, and the use of a single phosphorous diffusion (1-step emitter).  相似文献   

5.
This paper gives an overview about recent activities in the industrial application of high-efficiency monocrystalline silicon solar cells. It also presents the latest results achieved at Fraunhofer ISE, especially a new patented process for the formation of back-contact points on dielectrically passivated cells called laser-fired contacts and its application to thin wafers.  相似文献   

6.
This paper describes how the efficiency and throughput of industrial screen-printed multi-Si solar cells can be increased far beyond the state-of-the-art production cells. Implementation of novel processes of isotropic texturing, shallow emitter or single diffusion selective emitter, combined with screen-printed metallization fired through a PECVD SiNx ARC layer, have been described. Novel dedicated fabrication equipment for emitter diffusion and a PECVD SiNx deposition system are developed and implemented thereby removing the processing bottlenecks linked to the diffusion and bulk passivation processes. Several types of back-contacted solar cells with improved visual appeal required for building integrated photovoltaic (BIPV) application have been developed.  相似文献   

7.
A drift-field in the base region of a solar cell can enhance the effective minority-carrier diffusion length, thus increasing the long-wavelength spectral response and energy-conversion efficiency. Silicon thin-films of 20–32 μm thickness as a cell base layer were grown by liquid-phase epitaxy (LPE) on electronically inactive heavily doped p++-type CZ silicon substrates. Growth was performed from In/Ga solutions, and in a purified Ar/4%H2 forming gas ambient, rather than pure H2. The Ga dopant concentration was tailored throughout the p-type film to create a drift-field in the base layer of the solar cell. An independently confirmed efficiency of 16.4% was achieved on such an LPE drift-field thin-film silicon solar cell with a total cell area of 4.11 cm2. Substrate thinning, combined with light trapping which is encouraged by the textured front surface and a highly reflective aluminium rear surface, is demonstrated to improve the long-wavelength response and thus, increase cell efficiency by a factor of up to 23.7% when thinned to a total cell thickness of 30 μm.  相似文献   

8.
In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing.  相似文献   

9.
Luminescent porous silicon (PS) was prepared for the first time using a spraying set-up, which can diffuse in a homogeneous manner HF solutions, on textured or untextured (1 0 0) oriented monocrystalline silicon substrate. This new method allows us to apply PS onto the front-side surface of silicon solar cells, by supplying very fine HF drops. The front side of N+/P monocrystalline silicon solar cells may be treated for long periods without altering the front grid metallic contact. The monocrystalline silicon solar cells (N+/P, 78.5 cm2) which has undergone the HF-spraying were made with a very simple and low-cost method, allowing front-side Al contamination. A poor but expected 7.5% conversion efficiency was obtained under AM1 illumination. It was shown that under optimised HF concentration, HF-spraying time and flow HF-spraying rate, Al contamination favours the formation of a thin and homogeneous hydrogen-rich PS layer. It was found that under optimised HF-spraying conditions, the hydrogen-rich PS layer decreases the surface reflectivity up to 3% (i.e., increase light absorption), improves the short circuit current (Isc), and the fill factor (FF) (i.e., decreases the series resistance), allowing to reach a 12.5% conversion efficiency. The dramatic improvement of the latter is discussed throughout the influence of HF concentration and spraying time on the IV characteristics and on solar cells parameters. Despite the fact that the thin surfae PS layer acts as a good anti-reflection coating (ARC), it improves the spectral response of the cells, especially in the blue-side of the solar spectrum, where absorption becomes greater, owing to surface band gap widening and conversion of a part of UV and blue light into longer wavelengths (that are more suitable for conversion in a Si cell) throughout quantum confinement into the PS layer.  相似文献   

10.
Low temperature surface passivation for silicon solar cells   总被引:1,自引:0,他引:1  
Surface passivation at low processing temperatures becomes an important topic for cheap solar cell processing. In this study, we first give a broad overview of the state of the art in this field. Subsequently, the results of a series of mutually related experiments are given about surface passivation with direct Plasma Enhanced Chemical Vapour Deposition (PECVD) of silicon oxide (Si-oxide) and silicon nitride (Si-nitride). Results of harmonically modulated microwave reflection experiments are combined with Capacitance-Voltage measurements on Metal-Insulator-Silicon structures (CV-MIS), accelerated degradation tests and with Secondary Ion Mass Spectrometry (SIMS) and Elastic Recoil Detection (ERD) measurements of hydrogen and deuterium concentrations in the passivating layers. A large positive fixed charge density at the interface is very important for the achieved low surface recombination velocities S. The density of interface states Dit is strongly reduced by post deposition anneals. The lowest values of S are obtained with PECVD of Si-nitride. The surface passivation obtained with Si-nitride is stable under typical operating conditions for solar cells. By using deuterium as a tracer it is shown that hydrogen in the ambient of the post deposition anneal does not play a role in the passivation by Si-nitride. Finally, the results of CV-MIS measurements (Capacitance-Voltage measurements on Metal-Insulator-Silicon structures) on deposited Si-nitride layers are used to calculate effective recombination velocities as a function of the injection level at the surface, using a model that is able to predict the surface recombination velocity S at thermally oxidized silicon surfaces. These results are not in agreement with the measured increase of S at low injection levels.  相似文献   

11.
To improve the economy of photovoltaics, efficiencies of solar cells have to be drastically increased without using complex technologies. This work demonstrates that with the obliquely evaporated contact metal-insulator-semiconductor (MIS)-n+p solar cell structure recently developed at ISFH efficiencies exceeding 21% can be obtained using only four simple fabrication steps: (i) mechanical surface grooving, (ii) P-diffusion, (iii) oblique vacuum evaporation of Al, and (iv) plasma silicon nitride deposition. Cell design and processing sequences are outlined together with the importance of MIS contacts as both low-cost and high efficiency features. The custom-made pilot line equipment for mass production of 20% efficient 10×10 cm2 Cz silicon solar cells including Ga doped wafers is described.  相似文献   

12.
Although silicon solar cells based on layers less than 50 μm thick have become very popular, little attention has been paid to the role of the underlying silicon substrate. This treatment uses the device simulation program PC-1D and the ray tracing program SUNRAYS to examine the role of the substrate in contributing to the current and efficiency of textured and non-textured thin layer solar cells. For the case of a heavily doped silicon substrate, substrate contributions can be significant for cells with sufficiently thin base layers. For example, for the case of a silicon thin layer cell with a base layer thickness of 20 μm and a substrate doping of 6 × 1018 cm−3, the substrate contributes no more than 4% of the total short-circuit current. However, decreasing the base width to 5 μm results in an increase in this substrate contribution to 20%. Light trapping tends to alleviate the substrate contribution by increasing the effective path length in the base. Examination of the current components under forward bias reveals that for a thin layer cell with a high quality base and good front surface passivation, back diffusion of electrons into the substrate limits cell performance.  相似文献   

13.
The polycrystalline silicon material grown by the edge-defined film-fed growth technique, and often used in solar cell production, is known to be carbon and dislocation rich. Aim of this work was to explore the effect of low-temperature annealing in vacuum on properties of these structural defects, often present in different solar-grade materials. Electrical measurements by deep level transient spectroscopy revealed the presence of the defects typically found in dislocated silicon. Detailed analysis further suggested that they are also carbon related, exhibiting quite unexpected behavior at such low-temperature annealing. Moreover, photoluminescence results showed electron-hole droplet condensation at dislocations after such low-temperature annealing. This further supports the hypothesis that point defects are incorporated at dislocation cores rather than in a cloud at its proximity.  相似文献   

14.
This paper presents the results of an experimental study regarding the increase in the efficiency of the silicon solar cells by texturing the front surface. Designing, patterning and surface etching processes led to refined structures with very low losses of the incident optical radiation. Photolithography has been used to generate patterns (disc hole) through the silicon dioxide layer grown at the beginning on silicon wafers. The holes (4 μm in diameter) have been uniformly distributed on the entire surface (2×2) cm2 and the distance between the hole centres was determined to be 20 μm. Semispherical walls have been defined in holes by isotropic etching up to join together of the wells.  相似文献   

15.
A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the system is a V-shaped module (VSM) with two tilted monocrystalline solar cells. Compared to solar cells in a flat orientation, the VSM enhances external quantum efficiency and leads to an increase of 31% in power conversion efficiency. Due to the VSM technique, short-circuit current density was raised from 24.94 to 33.7 mA/cm2, but both fill factor and open-circuit voltage were approximately unchanged. For the VSM similar results (about 30% increase) were obtained for solar cells fabricated by using mono-crystalline silicon wafers with only conventional background impurities.  相似文献   

16.
For application of copper metallization to silicon solar cells, electrical resistivity of the electroplated Cu was investigated for different annealing conditions: the rapid thermal annealing (RTA) and the vacuum annealing at various temperatures. The characteristics of Ti as the diffusion barrier were also observed. The specific contact resistance between Si and Ti/Cu was measured using Kelvin test pattern. For 8-min electroplated sample, the lowest resistivity of 2.1 μΩ cm was obtained at 300°C RTA condition. For Cu with Ti barrier, 400°C 2 min vacuum-annealed sample showed etch pits whereas 400°C RTA showed no etch pits. A vacuum annealing at 450°C for 30 min reduced the specific contact resistance to 7.2×10−6 Ω cm2.  相似文献   

17.
Photovoltaic properties of buried metallic contacts (BMCs) with and without application of a front porous silicon (PS) layer on multicrystalline silicon (mc-Si) solar cells were investigated. A Chemical Vapor Etching (CVE) method was used to perform front PS layer and BMCs of mc-Si solar cells. Good electrical performance for the mc-Si solar cells was observed after combination of BMCs and thin PS films. As a result the current-voltage (I-V) characteristics and the internal quantum efficiency (IQE) were improved, and the effective minority carrier diffusion length (Ln) increases from 75 to 110 μm after BMCs achievement. The reflectivity was reduced to 8% in the 450-950 nm wavelength range. This simple and low cost technology induces a 12% conversion efficiency (surface area = 3.2 cm2). The obtained results indicate that the BMCs improve charge carrier collection while the PS layer passivates the front surface.  相似文献   

18.
Single crystalline silicon solar cells have demonstrated high-energy conversion efficiencies up to 24.7% in a laboratory environment. One of the recent trends in high-efficiency silicon solar cells is to fabricate these cells on different silicon substrates. Some silicon wafer suppliers are also involved in such development. Another recent trend is the increased production of high-efficiency silicon cells, some of them with low-cost structures. This paper will discuss the progress at the University of New South Wales, and these trends in other organisations.  相似文献   

19.
The application of the self-calibration method as a means of increasing the accuracy of spectral response, SR, and internal quantum efficiency, Q(λ), measurements is discussed. The principle of the method is the precise calculation of Qm) of a test cell for light at λm≈0.8 μm, where the response is weakly dependent on the emitter and base parameters. The ratio of the calculated and measured Qm) values gives the corresponding factor for shifting the experimental spectral response curve. The sequence of calculations is described, and an algorithm of the necessary operations for a computer is developed. Several examples of the use of the self-calibration method for correction of SR measurements of solar cells with low shunt resistance demonstrate its very high effectiveness. The corrected Q(λ) values follow the respective actual data with very high accuracy even when the measured SR is decreased by factor 2–3 due to low shunt resistance of the solar cell.  相似文献   

20.
This paper gives an extract of the state of the art of the manufacturing of semitransparent crystalline silicon POWER solar cells in an industrial environment. A short introduction of the POWER devices concept (see Fig. 1) will be given followed by an insight in the applied production process. Finally, examples effecting the efficiency distribution in the cell production and their solutions are given. It is believed that the lessons we learned in optimising the manufacturing process and production line of transparent POWER solar cells can be helpful for the increasing activities in the direction of thin wafers as well as novel solar cell devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号