首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release behavior of bred tritium to the blanket purge gas is mainly controlled by such bulk phenomena as tritium forming reaction, diffusion of tritium in grain, interaction of tritium with irradiation defects, and absorption together with such surface phenomena as adsorption, isotope exchange reaction between molecular form hydrogen in purge gas and tritium on grain surface (isotope exchange reaction 1), isotope exchange reaction between water vapor and tritium on grain surface (isotope exchange reaction 2), and water formation reaction at addition of hydrogen. Following the observation of the present authors that the isotope exchange reaction 2 is much faster than the isotope exchange reaction 1, the release curve of bred tritium obtained at purge with humidified gas was used for estimation of the effective diffusivity of bred tritium in LiAlO2. Then, the effective diffusivity of tritium in grain of LiAlO2 is obtained as DT = 2.5 × 10−7exp(−110 [kJ]/RT) [m2/s]. This equation gives the larger diffusivity than any other diffusivity presented so far because the mass transfer resistance at the grain surface is expected to be eliminated in the estimation procedure of this study.  相似文献   

2.
The liquid scintillation counting of solid samples (LSC-SS technique) was successfully used to study the role of microstructure and heat treatments on the behavior of residual tritium in several austenitic stainless steels (as-cast remelted tritiated waste, 316LN and 321 steels). The role of desorption annealing in the 100-600 °C range on the residual amount of tritium in tritiated waste was investigated. The residual tritium concentration computed from surface activity measurements is in good agreement with experimental values measured by liquid scintillation counting after full dissolution of the samples. The kinetics of tritium desorption recorded with the LSC-SS technique shows a significant desorption of residual tritium at room temperature, a strong barrier effect of thermal oxide films on the tritium desorption and a dependance of the tritium release on the steels microstructure. Annealing in the 300-600 °C range allows to desorb a large fraction of the residual tritium. However a significant trapping of tritium is evidenced. The influence of trapping phenomena on the concentration of residual tritium and on its dependance with the annealing temperature was investigated with different recrystallized and sensitized microstructures. Trapping is evidenced mainly below 150 °C and concerns a small fraction of the total amount of tritium introduced in austenitic steels. It presumably occurs preferentially on precipitates such as Ti(CN) or on intermetallic phases.  相似文献   

3.
Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.  相似文献   

4.
Release behavior of tritium from the graphite tiles used at dome top and inner dome wing in JT-60U was investigated by the thermal desorption method in dry argon, argon with oxygen and water vapor, or argon with hydrogen. It was found that approximately 20-40% of total tritium is left in graphite even after heating to the high temperature above 1000 °C in dry argon. The residual tritium could be removed by exposing the graphite tile to oxygen with water vapor or hydrogen at the high temperature above 1000 °C. The tritium retention of the dome top tile was quantified as 84-30 kBq/cm2. The inner dome wing tile had a steep tritium distribution from 8 to 0.1 kBq/cm2. It is observed that a measurable amount of tritium existed in the deep site of the graphite tile.  相似文献   

5.
Light emission from carbon-based materials (fine grain graphite, CFC and silicon doped CFC) was observed during ITER relevant thermal shock loads by means of in situ optical diagnostics. The light emission which corresponds to particle release clearly indicated different particle release processes in the three materials. The differences were also found in the initiation temperatures of particle release and the surface morphology of the loaded areas. These results are related to the thermal stress in bulk materials. In addition to particle release, vapor cloud formation caused by thermal shock loads were observed as CII lines and lines from the C2 Swan system. No Si lines but lines from SiC2 molecules (Merrill-Sanford bands) were observed in Si doped CFC. This indicates that atomic silicon is not released under ITER relevant thermal shock loads.  相似文献   

6.
The Pb-Bi eutectic liquid alloy is considered as spallation target material in hybrid systems due to its suitable nuclear and physical properties. One of the parameters which may have a significant influence on the corrosion of steels in contact with molten lead alloys is the hydrodynamic regime. Corrosion tests have been performed in the CICLAD device at 400 and 470 °C at low oxygen concentrations and for various cylinder rotating speeds with T91 martensitic steel. The results obtained show that increasing the rotating speed leads to an increase of the corrosion rate. Moreover, the need for controlling finely the Pb-Bi physico-chemistry as well as the surface state of the samples is also shown by these tests. Finally, a comparison is made between the experimental corrosion rates and calculated values obtained by using equations expressing the mass transfer coefficient.  相似文献   

7.
The Pb-Bi liquid alloy is under consideration as a spallation target material in the hybrid systems due to its suitable nuclear and physical properties. In order to limit the risks of corrosion of the structural elements in contact with the liquid Pb-Bi, protection by means of aluminized coatings was investigated for 316L austenitic steel and T91 martensitic steel. For both steels, no damages were observed after immersions in static Pb-Bi up to 500 °C for low oxygen concentrations and long durations. However, at 600 °C in the same conditions, a non-uniform degradation of the coatings was observed. Only coated 316L was tested in dynamic conditions. The results were generally satisfying for temperatures from 350 to 600 °C and for fluid velocities up to 2.3 m s−1. However, in both the IPPE loops and the CICLAD device, some localized damage of the coatings, attributed to erosion, was observed.  相似文献   

8.
The properties of ErT2 films change as the tritium decays into 3He, which has important implications for long-term film stability in applications such as neutron generators. Ultra-low load nanoindentation, analyzed using finite-element modeling to separate the nanomechanical properties of 500 nm ErT2 layers from those of the underlying substrates, has been used to examine the films as they age. The 3He bubbles which form as the film ages act as barriers to dislocation movement, hardening the material, but not dramatically affecting the elastic properties. By modeling the layer as an isotropic, elastic-plastic solid with the Mises yield criterion, the nanoindentation data is shown to correspond to an increase of nearly 2× in strength after aging for over a year.  相似文献   

9.
This paper presents the results of steel exposure up to 7200 h in flowing LBE at elevated temperatures and is a follow-up paper of that with results of an exposure of up to 2000 h. The examined AISI 316 L, 1.4970 austenitic and MANET 10Cr martensitic steels are suitable as a structural material in LBE (liquid eutectic Pb45Bi55) up to 550 °C, if 10−6 wt% of oxygen is dissolved in the LBE. The martensitic steel develops a thick magnetite and spinel layer while the austenites have thin spinel surface layers at 420 °C and thick oxide scales like the martensitic steel at 550 °C. The oxide scales protect the steels from dissolution attack by LBE during the whole test period of 7200 h. Oxide scales that spall off are replaced by new protective ones. At 600 °C severe attack occurs already after 2000 and 4000 h of exposure. Steels with 8-15 wt% Al alloyed into the surface suffer no corrosion attack at all experimental temperatures and exposure times.  相似文献   

10.
The mitigation effect of hydrogen water chemistry (HWC) on the low-frequency corrosion fatigue crack growth behaviour of low-alloy steels was investigated under those critical boiling water reactor (BWR) system conditions, where fast corrosion fatigue crack growth significantly above the ASME XI ‘wet’ reference fatigue crack growth curves was observed under normal water chemistry conditions (NWC). The experiments were performed under simulated BWR conditions at temperatures of 250, 274 or 288 °C. Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by scanning electron microscope were used to quantify the cracking response. HWC resulted in a significant drop of low-frequency corrosion fatigue crack growth rates by at least one order of magnitude with respect to NWC conditions and is therefore a promising and powerful mitigation method.  相似文献   

11.
The corrosion behaviours of austenitic steel AISI 316L and martensitic steel T91 were investigated in flowing lead-bismuth eutectic (LBE) at 400 °C. The tests were performed in the LECOR and CHEOPE III loops, which stood for the low oxygen concentration and high oxygen concentration in LBE, respectively. The results obtained shows that steels were affected by dissolution at the condition of low oxygen concentration (C[O2] = 10−8-10−10 wt%) and were oxidized at the condition of high oxygen concentration (C[O2] = 10−5-10−6 wt%). The oxide layers detected are able to protect the steels from dissolution in LBE. Under the test condition adopted, the austenitic steel behaved more resistant to corrosion induced by LBE than the martensitic steel.  相似文献   

12.
The dissolution of β-TUPD sintered samples was examined in various conditions of pH, temperature, concentrations of anions in the leachate and leaching flow rates. All the normalized dissolution rates were in the range 10−7 to 10−4 g m−2 day−1 even in very aggressive media, showing the good resistance of these ceramics to aqueous alteration. The first part of this paper describes several parameters exhibiting a significant influence on the normalized dissolution rate of the pellets prepared. Both the partial order relative to the proton concentration (n = 0.39-0.41) and the apparent activation energy (Eapp = 49 kJ mol−1) were found in good agreement with the data reported for powdered samples showing that the sintering process does not degrade the chemical durability of the ceramics. Moreover, due to the high thermodynamical constant of complexation of phosphate species for tetravalent uranium and thorium, the influence of other ligands such as nitrate, chloride or sulphate on the normalized dissolution rates was limited. Near the equilibrium, the increasing of the leaching time, the temperature or the leachate acidity led to the thorium precipitation at the surface of the pellets either in static or in dynamic conditions. Consequently, the dissolution became clearly incongruent and controlled by saturation processes which are described in the second part of this paper.  相似文献   

13.
Sintered pellets of thorium-uranium (IV) phosphate-diphosphate solid solutions (β-Th4−xUx(PO4)4P2O7, β-TUPD) were altered in several acidic media. All the results reported in the first part of this paper confirmed the good chemical durability of the samples. The evolution of the normalized weight loss showed that, in several media, thorium quickly precipitates in a neoformed phosphate-based phase while uranium (IV) is released in the leachate due to its oxidation into the uranyl form. The characterization of neoformed phases was carried out through several techniques involving grazing XRD, infrared and μ-Raman spectroscopies, EPMA, SEM and TEM. SEM micrographies showed that the dissolution mainly occurs at the grain boundaries, leading to the break away of the grains: only the first 15 μm are altered for 2 months in 10−1 M HNO3. From EPMA and BET measurements, neither the chemical composition nor the specific surface area are significantly modified. Near equilibrium, two neoformed phases were observed and identified by grazing XRD and/or μ-Raman spectroscopy at the surface of the leached pellets: one is found to be amorphous and progressively turns into the crystallized thorium phosphate-hydrogenphosphate hydrate (TPHPH). From the results obtained, a chemical scheme of the dissolution of β-TUPD sintered samples is proposed. The behavior of the actinides in the gelatinous phase appears mainly driven by their oxidation state: thorium remains in the tetrapositive state and is quickly and quantitatively precipitated while uranium (IV) is oxidized into uranyl then released in the leachate. The Th-precipitation as TPHPH first appears scattered then covers the entire surface of the pellet, inducing a delay of the actinides release in the leachate. Both phases act as protective layers and should induce the significant delay of the release of actinides (Th, U) to the biosphere.  相似文献   

14.
A weld metal well proven in the German nuclear industry served as the basis for the certification of a shape-welded steel to be used as base material for manufacture of nuclear primary components. The outstanding properties of this steel are attributed to the extremely fine-grained and stable primary microstructure. Subsequent reheating cycles caused by neighbouring weld beads do neither lead to coarsened brittle structures in the heat-affected zone nor to increase in hardness and decrease in toughness, as is the case with wrought steel materials. One of the largest new reactor vessel design amongst today’s advanced reactor projects is considered to be particularly suitable for the use of shape-welded parts in place of forgings. In addition the need for design and development of new shape-welded steel grades for other new generation reactor projects is emphasized, in which the experience gained with this research could make a contribution.  相似文献   

15.
The verification of analytical approximations for temperature and stresses during thermal loading is done for ceramic edge-cooled windows for the stellarator W7-X by comparison with more accurate numerical calculations. Numerical calculations show that a steady state temperature and stress approximations assuming edge-cooled circular plates can be applied only in the case when radiative cooling from a surface is neglected. The prediction for poor thermal conductivity ceramics under high heat flux load based on simple analytical equations can result in considerable mistakes in the temperature and, consequently, stress values. Even the prediction of the qualitative tendency of temperature and stress behaviour as a function of the window size can be wrong.  相似文献   

16.
A laser set-up has been implemented in order to evaluate laser detritiation by ablation. First experiments have been performed on TORE-SUPRA samples. A modelling tool has also been developed in order to estimate ablation thresholds. Furthermore, a diagnostic based on Optical Emission Spectroscopy has been implemented and has allowed the real time co-deposited layer removal to follow.  相似文献   

17.
The influence of different microstructural processes on the degradation due to radiation embrittlement has studied by positron annihilation and Mössbauer spectroscopy. The materials studied consisted of WWER-440 base (15Kh2MFA) and weld (10KhMFT) RPV steels which were neutron-irradiated at fluence levels of 0.78 × 1024 m−2, 1.47 × 1024 m−2 and 2.54 × 1024 m−2; WWER-1000 base (15Kh2NMFAA) and weld (12Kh2N2MAA) irradiated at a fluence level 1.12 × 1024 m−2; three different model alloys implanted with protons at two dose levels (up to 0.026 dpa), finally the base metal of WWER-1000 (15Kh2NMFAA) was thermally treated with the intention to simulate the P-segregation process. It has been shown possible to correlate the values of parameters obtained by such techniques and data of mechanical testing (ductile-to-brittle transition temperature and upper shelf energy).  相似文献   

18.
The depth profile of C impurity deposited on a W target exposed to H+ and C+ impurities at a concentration of C: 0.8% has been calculated in terms of segregation, diffusion and chemical erosion. For the segregation, the Gibbsian model has been used. For the diffusion, a concentration dependent diffusion model (C in WC and/or C) has been utilized. For the chemical erosion, the chemical erosion yield much lower than that for the H-C system has been applied. The calculated depth profiles at 653 K and 913 K are in good agreement with the XPS data. The agreement indicates that there is a significant contribution of segregation, which shifts the maximum C concentration to the top surface in the depth profiles. On the other hand, there are little contributions from diffusion and chemical erosion, which are related closely to formation of WC in the target.  相似文献   

19.
The first wall of an inertial fusion energy reactor may suffer from surface blistering and exfoliation due to helium ion irradiation and extreme temperatures. Tungsten is a candidate for the first wall material. A study of helium retention and surface blistering with regard to helium dose, temperature, pulsed implantation, and tungsten microstructure was conducted to better understand what may occur at the first wall of the reactor. Single crystal and polycrystalline tungsten samples were implanted with 1.3 MeV 3He in doses ranging from 1019 m−2 to 1022 m−2. Implanted samples were analyzed by 3He(d,p)4He nuclear reaction analysis and 3He(n,p)T neutron depth profiling techniques. Surface blistering was observed for doses greater than 1021 He/m2. For He fluences of 5 × 1020 He/m2, similar retention levels in both microstructures resulted without blistering. Implantation and flash heating in cycles indicated that helium retention was mitigated with decreasing He dose per cycle.  相似文献   

20.
TEM and PAS study of neutron irradiated VVER-type RPV steels   总被引:2,自引:0,他引:2  
Conventional transmission electron microscopy and positron lifetime and Doppler broadening positron annihilation spectroscopy techniques have been used to investigate the radiation-induced microstructural changes in surveillance specimens of VVER-type reactor pressure vessel (RPV) steels, and RPV steels irradiated in the research reactor. Defects visible in transmission electron microscopy consist of black dots, dislocation loops and precipitates concentrated along the dislocation substructure. Their size and density depend on the neutron flux and fluence. The parallel set of thermally aged specimens, specimens recovery annealed after irradiation and specimens irradiated in a lower neutron flux was investigated too. No defects discernible in transmission electron microscopy were found after accelerated irradiation in the research reactor. In addition to visible defects, the small-volume vacancy clusters were identified by positron annihilation spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号