首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haihui Wang  You Cong  Weishen Yang   《Catalysis Today》2005,104(2-4):160-167
A dense membrane tube made of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was prepared by plastic extrusion from BSCF oxide synthesized by the complexing EDTA-citrate method. The membrane tube was used in a catalytic membrane reactor for oxidative coupling of methane (OCM) to C2 without an additional catalyst. At high methane concentration (93%), about 62% C2 selectivity was obtained, which is higher than that achieved in a conventional reactor using the BSCF as a catalyst. The dependence of the OCM reaction on temperature and methane concentration indicates that the C2 selectivity in the BSCF membrane reactor is limited by high ion recombination rates. If an active OCM catalyst (La-Sr/CaO) was packed in the membrane tube, C2 selectivity and CH4 conversion increased compared to the blank run. The highest C2 yield in the BSCF membrane reactor in presence of the La-Sr/CaO catalyst was about 15%, similar to that in a packed-bed reactor with the same catalyst under the same conditions. However, the ratio of C2H4/C2H6 in the membrane reactor was much higher than that in the packed-bed reactor, which is an advantage of the membrane reactor.  相似文献   

2.
The pulse corona plasma has been used as an activation method for reaction of methane and carbon dioxide, the product was C2 hydrocarbons and by-products were CO and H2. Methane conversion and the yield of C2 hydrocarbons were affected by the carbon dioxide concentration in the feed. The conversion of methane increased with increasing carbon dioxide concentration in the feed whereas the yield of C2 hydrocarbons decreased. The synergism of La2O3/γ-Al2O3 and plasma gave methane conversion of 24.9% and C2 hydrocarbons yield of 18.1% were obtained at the power input of plasma was 30 W. The distribution of C2 hydrocarbons changed by using Pd-La2O3/γ-Al2O3 catalyst, the major C2 product was ethylene.  相似文献   

3.
CaO catalysts promoted with various elements were examined systematically for the oxidative coupling of methane. 10 mol% Li+-CaO and 10 mol% Ba2+-CaO gave high C2 yield (23 to 26% at 1023 to 1073 K for 10% Li+-CaO) under CH4 and O2 partial pressure of 2.8 and 1.4 kPa respectively. A three components catalyst, 10 mol% Li+-5 mol% Ba2+-CaO, was also found to be an effective catalyst, given that the reaction temperature to give the maximum C2 yield was lower than those for the two components catalysts under the same reaction condition. Quenching the flow down stream the reactor improved C2 yield.  相似文献   

4.
Oxidative coupling of methane to higher hydrocarbons (C2+) using NaOH/CaO and pure CaO as catalyst was studied in fluidized- and packed-fluidized-bed reactors at 700°C to 800°C, partial pressures of methane from 0.5 to 0.7 bar and oxygen from 0.05 to 0.25 bar and a total pressure of ca 1 bar; oxygen conversion amounted generally to 50 to 100 %. C2+ selectivity depends for both reactors markedly on temperature and oxygen partial pressure. The optimum temperature ranges between 750 and 800°C. Highest selectivities (ca 76 %) were achieved at the lowest oxygen partial pressure (ca 0.06 bar); maximum yields (ca 13.5 %), however, were obtained at an oxygen partial pressure of ca 0.14 bar. The application of the fluidized-bed reactor is more favourable than the packed-fluidized-bed reactor with respect to operability and C2+ selectivity.  相似文献   

5.
In order to examine the importance of the further oxidation of the desired C2 products in the oxidative coupling of methane, ethylene and ethane have been added to the feed (containing methane and oxygen) to a Li/MgO or Ca/Sm2O3 catalyst. The results of these measurements show that neither of these C2 molecules is stable under these conditions with either of the catalysts. Additionally, the rates of the oxidation of ethane and of ethylene alone have been measured using a gradientless reactor for both catalysts as well as for a quartz bed. It was found that the Ca/Sm2O3 material had higher activities for the oxidation of C2H6 and C2H4 (and also of CH4) than had the Li/MgO material. These higher activities result in a lower optimal reaction temperature for the oxidative coupling of methane and are (at least partially) responsible for the lower selectivity to C2 products observed with the Ca/Sm2O3 catalyst compared to that with the Li/MgO catalyst.  相似文献   

6.
The oxidation of propylene to propylene oxide (PO) with hydrogen–oxygen mixtures was studied on gold supported on the mesoporous titanium silicate, Ti-TUD. The catalyst gave stable activity at low conversions of propylene (<6%) and high selectivity to PO (>95%). Kinetic data were fit to a power-rate law and gave the following expression: rPO = k(H2)0.54(O2)0.24(C3H6)0.36. The fractional orders in hydrogen, oxygen, and propylene indicated that these reactants interacted with the catalyst to form species that led to the final PO product. The catalyst likely operated by the commonly accepted mechanism of hydrogen peroxide production on gold sites, and epoxidation on titanium centers. Carbon dioxide was formed primarily from further oxidation of PO rather than the oxidation of propylene, while water was produced from the reaction of hydrogen and oxygen.  相似文献   

7.
The kinetics of oxidation of a light hydrocarbon (C2H4) were studied on catalysts comprising of combinations of one of three metals, Pt, Pd or Rh supported on five different supports, that is, SiO2, γ-Al2O3, ZrO2 (8% Y2O3), TiO2 or TiO2 (W6+). Significant variation of turnover frequency with the carrier was observed, which cannot be explained by structure sensitivity considerations and is attributed to interactions between the metal crystallites and the carrier. The catalytic activity of these metal-support combinations was investigated over a wide range of partial pressures of ethylene and oxygen. In a separate set of experiments, the kinetics of C2H4 oxidation were also investigated on polycrystalline Rh films interfaced with ZrO2 (8 mol% Y2O3) solid electrolyte in a galvanic cell of the type: C2H4, O2, Rh/YSZ/Pt, air, during regular open-circuit conditions as well as under Non-Faradic Electrochemical Modification of Catalytic Activity (NEMCA), that is, closed-circuit conditions. Up to 100-fold increase in catalytic activity was observed by supplying O2− ions to the catalyst surface via positive potential application to the catalyst. The observed kinetic behavior upon increasing catalyst potential parallels qualitatively the observed alteration of turnover frequency with variation of the support of the Rh crystallites.  相似文献   

8.
Conversion of CH4, C2H6, C3H8, benzene and their binary mixtures over H-NaZSM-5 catalyst in the presence of N2O was studied. It was found that under experimental conditions methane alkylates benzene to give toluene and xylenes. Acidity of the catalyst had no effect on the reactivity of active oxygen formed from N2O towards methane and benzene, but affected their secondary transformation. Acidic samples favored the reaction of aromatic ring methylation with methane whereas deep oxidation of CH4 prevailed on NaHZSM-5. Based on the relative reactivities and 13C label distribution in the products of 13CH4+C6H6+N2O feed conversion, the scheme of hydrocarbon transformation was proposed.  相似文献   

9.
Pulse reaction method and in situ IR spectroscopy were used to characterize the active oxygen species for oxidative coupling of methane (OCM) over SrF2/Nd2O3 catalyst. It was found that OCM activity of the catalyst was very low in the absence of gas phase oxygen, which indicated that lattice oxygen species contributed little to the yield of C2 hydrocarbons. IR band of superoxide species (O2) was detected on the O2-preadsorbed SrF2/Nd2O3. The substitution of 18O2 isotope for 16O2 caused the IR band of O2 at 1128 cm−1 to shift to lower wavenumbers (1094 and 1062 cm−1), consistent with the assignment of the spectra to the O2 species. A good correlation between the rate of disappearance of surface O2 and the rate of formation of gas phase C2H4 was observed upon interaction of CH4 with O2-preadsorbed catalyst at 700 °C. The O2 species was also observed on the catalyst under working condition. These results suggest that O2 species is the active oxygen species for OCM reaction on SrF2/Nd2O3 catalyst.  相似文献   

10.
The oxidative coupling of methane (OCM) over a La2O3/CaO catalyst was studied in a poly tropic fixed-bed reactor (I.D. = 15 mm, W/F= 0.15 g · s/ml). Reaction conditions for stable operation were determined. (1) A minimum inlet temperature of 580°C was necessary to initiate the reaction. (2) The maximum hot-spot temperature of 1000°C limited the highest oxygen inlet concentration to 20%. The temperature gradients in the bed amounted to 250 K. The influence of the reaction conditions on the C2+ selectivity was investigated by testing the effects of temperature (Tinlet = 580–860°C), oxygen concentration (CO2 = 5–20%) and particle diameter (dp = 250–350 μm, and pellets of hp = 4 mm and dp = 4 mm). The C2+ selectivity ran through a maximum with increasing temperature and decreased with rising inlet oxygen concentration. Mass-transfer limitations, which occurred when applying pellets, resulted in a drop of C2+ selectivity. Highest C2+ yields amounted to 15.5% (XCH4 = 31%, S 2+ = 51%). Distributed feed of oxygen was tested as a means to cope with the high temperature gradients and to increase C2+. selectivity. Upon applying this mode of operation, oxygen concentrations up to 30% could be converted. However, no improvement of C2+ selectivity and yield compared to cofeed operation was achieved.  相似文献   

11.
Alkali halide added transition metal oxides produced ethylene selectively in oxidative coupling of methane. The role of alkali halides has been investigated for LiCl-added NiO (LiCl/NiO). In the absence of LiCl the reaction over NiO produced only carbon oxides (CO2 + CO). However, addition of LiCl drastically improved the yield of C2 compounds (C2H6 + C2H4). One of the roles of LiCl is to inhibit the catalytic activity of the host NiO for deep oxidation of CH4. The reaction catalyzed by the LiCl/NiO proceeds stepwise from CH4 to C2H4 through C2H6 (2CH4 → C2H6 → C2H4). The study on the oxidation of C2H6 over the LiCl/NiO showed that the oxidative dehydrogenation of C2H6 to C2H4 occurs very selectively, which is the main reason why partial oxidation of CH4 over LiCl/NiO gives C2H4 quite selectively. The other role of LiCl is to prevent the host oxide (NiO) from being reduced by CH4. The catalyst model under working conditions was suggested to be the NiO covered with molten LiCl. XPS studies suggested that the catalytically active species on the LiCl/NiO is a surface compound oxide which has higher valent nickel cations (Ni(2+δ)+ or Ni3+). The catalyst was deactivated at the temperatures>973 K due to vaporization of LiCl and consumption of chlorine during reaction. The kinetic and CH4---CD4 exchange studies suggested that the rate-determining step of the reaction is the abstraction of H from the vibrationally excited methane by the molecular oxygen adsorbed on the surface compound oxide.  相似文献   

12.
This paper deals with the activity of bimetallic potassium–copper and potassium–cobalt catalysts supported on alumina for the reduction of NOx with soot from simulated diesel engine exhaust. The effect of the reaction temperature, the soot/catalyst mass ratio and the presence of C3H6 has been studied. In addition, the behavior of two monometallic catalysts supported on zeolite beta (Co/beta and Cu/beta), previously used for NOx reduction with C3H6, as well as a highly active HC-SCR catalyst (Pt/beta) has been tested for comparison. The preliminary results obtained in the absence of C3H6 indicate that, at temperatures between 250 and 400 °C, the use of bimetallic potassium catalysts notably increases the rate of NOx reduction with soot evolving N2 and CO2 as main reaction products. At higher temperatures, the catalysts mainly favor the direct soot combustion with oxygen. In the presence of C3H6, an increase in the activity for NOx reduction has been observed for the catalyst with the highest metal content. At 450 °C, the copper-based catalysts (Cu/beta and KCu2/Al2O3) show the highest activity for both NOx reduction (to N2 and CO2) and soot consumption. The Pt/beta catalyst does not combine, at any temperature, a high NOx reduction with a high soot consumption rate.  相似文献   

13.
It is now well known that when Pd is supported on acidic supports, it becomes highly selective for the reduction of NO by methane in the presence of excess oxygen. It is also known that this promoting effect not only occurs with acidic zeolite supports, but also with acidic zirconia supports, such as sulfated zirconia (SZ) and tungstated zirconias (WZ). However, this promoting effect has not been investigated for the SCR with other hydrocarbons as reducing agents. In this contribution, we have investigated the behavior of a series of Pd/WZ catalysts and compared them using methane and propylene as reducing agents. The results show some important differences when the reducing agent is changed. For example, while with CH4 the addition of W to the catalyst results in an increase in both NO and hydrocarbon conversion, with C3H6 it results in a decrease in activity. At the same time, while the presence of NO accelerates the activation of CH4, it inhibits the activation of C3H6, moving its light-off to higher temperatures. Finally, an important difference between CH4 and C3H6 as reducing agents is regarding the selectivity towards N2 as opposed to N2O. Using CH4 resulted in much lower production of N2O than using C3H6, over the entire temperature range investigated.  相似文献   

14.
The dependence of C2+ selectivity on oxygen conversion (20 to 95%) and on particle size (0.2 mm, 1.2 mm, 4×4 mm) of the catalyst, i.e. under conditions of mass transport limitation during the oxidative coupling of methane on a NaOH/CaO catalyst was experimentally studied at three temperatures (953, 983, 1013 K) and at a partial pressure of oxygen of 0.075 bar and of methane of 0.7 bar. A kinetic reaction scheme was derived for which the overall kinetic parameters were reported. Reaction engineering calculations with respect to the particle size effect, taking into account transport phenomena, are presented and compared with experimental evidence.  相似文献   

15.
采用浸渍法制备不同金属氧化物载体负载的Li-Mn/MO_x(M=Mg,La,Ti,Si,Zr,Ta)催化剂,对其甲烷氧化偶联反应活性进行评价。结果表明,以TiO_2为载体制备的Li-Mn/TiO_2催化剂具有较高的CH_4转化率和C2烃选择性,C_2烃产率显著提高,金属氧化物TiO_2是Li-Mn复合氧化物的优良催化剂载体。n(Li)∶n(Mn)=1.0∶2.0形成的Li-Mn/TiO_2催化剂具有最高的CH_4转化率和C_2烃选择性,n(C_2H_4)∶n(C_2H_6)的增加有助于提高反应产物中C_2H_4的相对浓度,W元素的添加未能进一步提高Li-Mn/TiO_2催化剂的催化活性。Li-Mn/TiO_2催化剂在n(Li)∶n(Mn)=1.0∶2.0、反应温度775℃、反应压力0.1 MPa、V(CH_4)∶V(O_2)=2.5、空速7 200 m L·(h·g)~(-1)和催化剂用量0.5 g条件下,CH_4转化率达31.9%,C_2选择性达52.7%,表现出最佳催化效果。  相似文献   

16.
The reaction condition for high yield of methanol in a gaseous reaction between methane and oxygen in the presence of NO at atmospheric pressure was explored. Methane partial oxidation without NO (CH4–O2) gave only 1% conversion of methane at 966 K. The addition of NO led to a remarkable increase in methane conversion and to high selectivity to C1-oxygenates. The conversion of methane attained 10% at 808 K in the presence of NO (0.5%) where the selectivities to methanol and formaldehyde were 22.1 and 24.1%, respectively. Nitromethane and carbon oxides were also observed in the product gas. The amount of nitromethane was almost equal and/or near to that of initial NO. The carbon monoxide produced was several times higher than carbon dioxide. Influences of NO concentration, ratio of methane to oxygen, water vapor, and dilution with helium gas on product distribution were measured. Low concentration of NO (0.35–0.55%) was favorable for methanol formation. High selectivity to methanol was obtained at low value of the ratio of methane to oxygen (2.0–3.0) or low concentration of dilution gas (<16%). The NO2 added promoted methane partial oxidation and selectivity to methanol. Therefore, it was assured that NOx promoted the formation of CH3√ and CH3O√ in the gas phase reaction for CH4–O2–NO.  相似文献   

17.
The decomposition of different hydrocarbons (CH4, C2H6, C2H4, C2H2, C3H8, and C3H6) over Ni (5 wt.%)/SiO2 catalysts was carried out. The initial rates of decomposition of the hydrocarbons, the kinetic curves of the decomposition and the kinetic curves of the hydrogenation of deposited carbon into methane depended on the types of hydrocarbons. In addition, the catalytic life of the Ni/SiO2 catalyst was also dependent on the types of hydrocarbons, i.e. the life was longer according to the order, alkanes>alkenesacetylene.

The carbons deposited on the catalyst were characterized by SEM and Raman spectroscopy. The appearances of the deposited carbons were different among alkanes, alkenes, and acetylene, i.e. a zigzag fiber structure from methane, and a rolled fiber structure from alkenes and acetylene. From Raman spectra of the deposited carbons, it was found that the degree of graphitization of deposited carbon was higher in the order, alkanes>alkenes>acetylene. These results suggest that the mechanism of decomposition of hydrocarbons and the growth mechanism of carbon fibers on the catalyst were different among alkanes, alkenes and acetylene.  相似文献   


18.
Partial oxidation of methane to synthesis gas was carried out using supported iridium–nickel bimetallic catalysts, in order to reduce loading levels of iridium and nickel, and to avoid carbon deposition on nickel-based catalysts by adding iridium. The performance of supported iridium–nickel bimetallic catalysts in synthesis gas formation depended strongly upon the support materials. La2O3 gave the best performance among the support materials tested. Ir(0.25 wt%)–Ni(0.5 wt%)/La2O3 afforded 36% conversion of methane (CH4/O2=5) to give CO and H2 with the selectivities of above 90% at 800°C, and those at 600°C were 25.3% conversion of methane and CO and H2 selectivities of about 80%, respectively. Reduced monometallic Ir(0.25 wt%)/La2O3 and Ni(0.5 wt%)/La2O3 catalysts did not produce synthesis gas at 600°C. A higher conversion of methane was obtained by synergistic effects. The product concentrations of CO, H2, and CO2, and CH4 conversion were maintained in high values, even increasing the space velocity of feed gas over Ir–Ni/La2O3 catalyst, indicating that rapid reaction takes place. As a by-product, a small amount of carbon deposition was observed, but carbon formation decreased with increasing the space velocity. On the other hand, with reduced monometallic Ni(10 wt%)/La2O3 catalyst, yield of synthesis gas and carbon decreased with increasing the space velocity.  相似文献   

19.
Coprecipitated catalyst systems containing BaCO3 and La2On(CO3)m (n≥1.5) with La/Ba = 0.05-10 were tested for catalytic activity, selectivity and stability in the oxidative coupling of methane reaction (OCM). Maximum C2+ selectivities of 78% and C2+ yields of 11% were obtained. The results show that La is the more active cation component of the system. The presence of BaCO3 in the system leads to decreasing crystal size of the La phases, and to higher C2+ selectivities at equal methane conversions. Life time tests showed that the Ba- La-containing catalysts were quite stable. Na impurities in the system lead to larger crystals in the La phases, and to less selective and less stable catalysts for the OCM reaction. Na is lost during reaction.  相似文献   

20.
The homogeneous gas phase O2-based oxidation of methane was studied in the temperature range, from 500°C to 750°C at methane partial pressures ranging from 3 bar to 40 bar. At the lower end of the temperature range methanol, formaldehyde, and CO represent the main products, while at temperatures exceeding 650° C/C-coupled products, C2H6, C2H4, C3H6 and C3H8 predominate. The change in selectivity as function of the temperature is well explained based on a free radical chain mechanism with degenerate branching, initiated by the gas phase reaction, CH4+O2→CH·3+HO·2. Bringing in basic catalysts known to catalyze the system at low methane partial pressures, in the reactor e.g. SrCO3, BaCO3, and 7% Li/MgO resulted in reduced rates of methane and oxygen conversions, and only minor changes in the selectivity to coupled products were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号