首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution blow spinning (SBS) is a process to produce non-woven fiber sheets with high porosity and an extremely large amount of surface area. In this study, a Box–Behnken experimental design (BBD) was used to optimize the processing parameters for the production of nanofibers from polymer solutions consisting of poly(lactic acid) (PLA) dissolved in dimethyl carbonate. In addition, a comparative study between SBS fibers and cast film was performed to verify the influence of the SBS process on the crystallinity and thermal properties of PLA. The PLA concentration in polymer solutions was the most significant parameter affecting fiber diameter. The BBD analysis revealed that small diameter fibers were best obtained by a combination of 8 % w/v PLA concentration, 80 psi air pressure, and a feed rate of 50 µL min?1. The comparative study showed that both the SBS and the film casting processes increased the PLA crystallinity. However, the PLA films had a higher degree of crystallinity compared with the fibers made by the SBS process (39 and 17 %, respectively), which was attributed to the high shear created at the SBS nozzle inducing orientation and chain alignment. During the fiber formation, crystals formed with varied morphology including the α′-crystals, which have a less ordered structure and lower thermal stability compared to the α-crystals. The lower thermal stability of SBS fibers compared to the films can be explained by the lower degree of crystallinity and also by the higher surface area which can accelerate the weight loss process.  相似文献   

2.
In this study, a thermoplastic/elastomeric binary blend of non-vulcanized natural rubber (NR) and polycaprolactone (PCL) was electrospun using polymer solutions consisting of varying proportions of PCL and NR. Specifically, an 8 % (w/v) NR/toluene solution was mixed with an 8 % (w/v) PCL/chloroform solution at proportions of 2, 15, 30, and 50 % (v/v). The morphological, thermal, and mechanical properties of the electrospun mats were investigated by scanning electron microscopy (SEM), differential scanning calorimetry, and uniaxial tensile tests. The SEM images demonstrated the production of micrometer- and sub-micrometer-sized fibers with no bead formation. Fibers with diameters ranging from 1.3 μm for samples with 0 % NR to 210 nm for samples containing 50 % NR were observed. Fibers with rough and smooth morphologies were observed, showing that the PCL/NR mats had phase-separated. The blend miscibility was evaluated by thermal analysis, which showed that blending did not improve the thermal stability of the systems. An investigation of the mechanical properties of the electrospun mats showed that adding NRL to the blend increased the tensile modulus, the ultimate elasticity, and the strain. Thus, non-vulcanized NR was successfully incorporated into electrospun mats, which exhibited useful mechanical properties that could be harnessed in biomaterials applications.  相似文献   

3.
Electrospinning is a cost effective and facile method to manufacture fiber mats appropriate for biomedical applications. Due to its high molecular weight and charged backbone, hyaluronic acid (HA) fiber mats with consistent fiber morphology have been difficult to electrospin from neutral pH solutions. Here, we present that the electrospinning of HA fibers in aqueous dimethylformamide solutions is facilitated by the addition of three phosphate salts. The salts—glycerol phosphate (GP), sodium phosphate (SP), and tripolyphosphate (TPP)—facilitated electrospinning of the solutions as characterized by conductivity measurements and fiber morphology. From tensile experiments, HA mats electrospun with SP demonstrated improved Young’s modulus (12 MPa) over HA mats spun with either GP or TPP (5 and 3 MPa, respectively). This work demonstrates that a new neutral solvent system can be employed to spin HA fibers, which offers the potential for using the fibers for biomedical applications, such as a bone biomimetic.  相似文献   

4.
Two types of fibers were prepared by using bio-based materials: a mono-filament made from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a multi-filament made from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) blend. The two fibers were evaluated for mechanical properties, biocompatibility and degradability for the potential application as medical sutures. The PHBHHx fiber showed remarkable biocompatibility by H.E. Stainning, with very little impact to the surrounding tissues. The degradation of the fiber was observed by SEM after implantation for 36 weeks, and the major degradation product was detected after 96 weeks. Consistently, the PHBHHx fiber maintained more than half of the mechanical properties after 96 weeks. The other fiber was prepared by twisting PHBV/PLA blend strands to a bunch, and showed high biocompatibility and relatively high degradability. The bunched structure loosed after 36 weeks of implantation. These low-cost and easily prepared fibers have great potential in medical applications, since they could avoid the formation of fibrous capsule, reduce the size of scar, and degrade into non-toxic and even beneficial products.  相似文献   

5.
A simplified process was developed for fabricating natural bio-based fiber-reinforced polymer composites for applications such as automotive interior trim substrates. Biofiber (Kraft pulp fiber) and four types of thermoplastic polymers (PP, two PP/PE polymer blends, and PLA) were first wet-formed into fiber/polymer mats and the mats were made into composites using a match-mold thermoforming process. The effects of void content on the composite tensile and flexural properties were investigated. Impact resistance and heat deflection temperature were tested and acoustic absorption coefficients of the composites were evaluated as well. Two types of prototype panels (2-D and 3-D) containing biofiber/polymer composite substrates with a bonded synthetic leather decorative surface were successfully made using this process. Biofiber/PP composites had comparable performance to the commercially available non-wood natural fiber/PP composite counterparts for the properties investigated in this study at the same density level (0.8 g/cm3).  相似文献   

6.
The impact of mat porosity of polycaprolactone (PCL) electrospun fibers on the infiltration of neuron-like PC12 cells was evaluated using two different approaches. In the first method, bi-component aligned fiber mats were fabricated via the co-electrospinning of PCL with polyethylene oxide (PEO). Variation of the PEO flow rate, followed by selective removal of PEO from the PCL/PEO mesh, allowed for control of the porosity of the resulting scaffold. In the second method, aligned fiber mats were fabricated from various concentrations of PCL solutions to generate fibers with diameters between 0.13 ± 0.06 and 9.10 ± 4.1 μm. Of the approaches examined, the variation of PCL fiber diameter was found to be the better method for increasing the infiltration of PC12 cells, with the optimal infiltration into the ca. 1.5-mm-thick meshes observed for the mats with the largest fiber diameters, and hence largest pore sizes.  相似文献   

7.
The objective of this study was to improve bending strength properties of three-layer wood–porcelain stone composite board. The focus of this study was on the effects of orientations and weight ratios of bamboo fiber in face layer on physical and mechanical properties of the board. Three types of board with different orientation of bamboo fibers in the face layer were manufactured: one in which the fibers were oriented at random orientation (R board), another in which the fibers were oriented at unidirectional orientation (U board), and a third in which the fibers were oriented at cross orientation (C board). The physical and mechanical properties of the boards were evaluated based on the Japanese Industrial Standard for Particleboards. The main results obtained were as follows: Bending strength properties of the board were strongly affected by both orientation and weight ratio of bamboo fibers. Perpendicular specimen of C board has larger bending strength properties than U board and the value become larger with increased weight ratio of bamboo fibers. Internal bond strength value decreased with increasing weight ratio of bamboo fibers. The effect of orientation and weight ratios of bamboo fiber on thickness swelling of the board was not significant.  相似文献   

8.
The influence of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers was studied. It was observed that the Young’s modulus of the treated fibers increased with heat treatment temperature (HTT) and hot stretching stress, to 173 GPa by 158.2 % through hot stretching at 2700 °C under stress of 270 MPa compared to that of the as-received carbon fiber. Meanwhile the tensile strength increased to 1.75 GPa by 73.3 % through hot stretching at 2700 °C under 252 MPa. The field emission scanning electron images showed markedly increased roughness on the external surface and bigger and more compacted granular morphologies on the cross section of the treated fibers with increasing HTT. The preferred orientation of graphitic layers was improved by hot stretching, and the higher the HTT, the stronger the effectiveness of the hot stretching. The crystallite sizes grew and the crystallite interlayer spacing decreased obviously with increasing HTT but changed just slightly with increasing stretching stress. The analysis based on uniform stress model and shear fracture theory proposed that the improvement of tensile strength and Young’s modulus for rayon-based carbon fiber was mainly due to the increased preferred orientation and nearly unchanged shear modulus between planes with increasing HTT during hot stretching graphitization, which was much different from polyacrylonitrile-based carbon fibers.  相似文献   

9.
Mechanically robust, non-toxic polymer fiber mats are promising materials for a range of biomedical applications; however, further research into enhancing polymer selection is needed. In this study, poly(allylamine) (PAH), an amine-containing polyelectrolyte, was successfully electrospun from aqueous solutions into continuous, cylindrical fibers with a mean diameter of 150 ± 41 nm. A one-step crosslinking method using glutaraldehyde provides insight into the chemical and morphological changes that result from altering the molar ratio of amine to aldehyde groups, whereas a two-step crosslinking method yielded chemically and mechanically robust mats. These results indicate PAH fibrous mats synthesized from aqueous solutions could potentially be applied in biomedical applications.  相似文献   

10.
Changes in the internal structure of nonwoven mats during tensile testing were investigated in situ with micro X-ray computer tomography (CT). Fiber orientation and volume fraction, as well as fiber–fiber contact, were quantitatively characterized at several strain levels. These parameters are apt to change under tensile loading and are important in determining the mechanical properties of nonwoven mats. The reorientation of fibers along the tensile direction was restricted at large deformations due to interlocked structures, which formed as a result of inherent entanglements in the nonwoven mats. In addition, contact efficiency, which describes the relative degree of fiber–fiber contact and was shown to be a suitable geometrical parameter for characterizing the microstructure of nonwoven mats, decreased at low strain and then increased with increasing strain until failure.  相似文献   

11.
Novel bio-based lightweight sandwich-structured composites with both skin and core materials made from biofiber and poly(lactic acid) (PLA) matrix were developed. The composites contained 48 wt% cellulose fiber and 52 wt% PLA matrix. The fabrication process was simple and required no adhesive for the skin–core bonding. The effects of fiber weight fraction and density on the core compressive properties were evaluated experimentally. Fifty percent of fibers gave the best results among the three fiber weight fractions studied and was used in preparing cores for subsequent fabrication of the sandwich-structured composites. The flexural properties and failure modes of the sandwich-structured composites were assessed. The flexural properties of the composites met the published deflection requirements for automotive load floor applications. Since these biocomposites were made using natural renewable materials that are fully biodegradable and recyclable, they show potential to be used as environmentally friendly alternatives to the existing products.  相似文献   

12.
Advanced green composites having excellent strength and stiffness were fabricated using liquid crystalline (LC) cellulose fibers and soy protein isolate (SPI) resin. Further, LC cellulose fibers were treated with potassium hydroxide (KOH) to improve their tensile strength and Young’s modulus by increase the crystallinity of cellulose. The improvements were significant when the treatment was carried out while keeping the fibers under tension. The Young’s modulus (stiffness) of the LC cellulose fibers increased by about 33 % from 47.8 to 63.7 GPa and the strength increased by about 18 % from 1483 MPa to 1749 MPa. X-ray diffraction (XRD) study of the LC cellulose fibers showed over 50 % increase in crystallinity after the KOH treatment. The mechanical properties of the LC cellulose fiber-reinforced composites were also high and improved further when the KOH treated fibers were used. With 65 % fiber volume it should be possible to obtain composites with strength above 1020 MPa and modulus of over 37 GPa, making them truly advanced green composites that could be used for structural applications.  相似文献   

13.
The (100) oriented and random oriented 0.755Bi0.5Na0.5TiO3–0.065BaTiO3–0.18SrTiO3 (BNT–BT–ST) thin films were deposited on LaNiO3 (LNO) buffered Pt(111)/Ti/SiO2/Si substrates by the sol–gel processing technique. The orientation is controlled by the concentration of solution. The structure, dielectric and piezoelectric properties of the thin films are significantly affected by the crystallographic orientation. The (100) oriented BNT–BT–ST thin film has improved dielectric and piezoelectric properties. For the (100) oriented and random oriented BNT–BT–ST thin films, the dielectric constants are 660 and 550, the dielectric losses are 0.045 and 0.076 and the effective piezoelectric coefficients are 140 and 110 pm/V, respectively. The large piezoelectric response is attributed to the uniform microstructure and increased lattice distortion along (100) direction.  相似文献   

14.
Electrospinning, which produces nano/micro-fiber in a remarkably simple and fast manner, has been applied for numerous materials in various areas. In this study, the characteristics of micro-glass bead/PLA porous fiber composite were studied. The breath figure method was implemented to fabricate porous PLA fibers from PLA solution obtained by dissolving PLA in a solvent mixture (10:1 weight ratio) of dichloromethane (DCM) and N,N-dimethylacetamide (DMAc). The micro-beads (60 μm) were used to make more gaps between fibers and the specific surface area was measured and compared. Furthermore, the sound absorption and the insulation property of the samples were also measured. The specific surface area of samples increased from 1.45 to 4.39 m2/g with the addition of micro-glass beads and porous structure. The insulation property improved from 40 to 35 mW/m K with addition of micro-glass beads due to the formation of air layers.  相似文献   

15.
Inertia effects of large-aspect-ratio fibers have been investigated in wall turbulence. The turbulent flow field in a plane channel was obtained from a direct numerical simulation. The translational and rotational motion of the rigid fibers were obtained by a Lagrangian approach, first for inertial fibers with Stokes number St = 10, 1.0 and 0.1 and thereafter for massless fibers, which correspond to St = 0. All simulations were one-way coupled. The fiber orientation statistics and the normal components of the fiber stress tensor turned out to be almost independent of the fiber inertia all the way from the channel wall to the center for St ≤  1.0. This observation suggested that fiber inertia plays a negligible role for Stokes number below unity and the gap between inertial fibers and massless fibers has been bridged. The massless particle approach appears as a viable alternative to mimic the orientation and stress tensor of fibers with only modest inertia.  相似文献   

16.
The purpose of this study was to investigate the effect of fiber orientation of a fiber-reinforced composite (FRC) made of poly-methyl-methacrylate (PMMA) and E-glass to the surface fabrication process by solvent dissolution. Intention of the dissolution process was to expose the fibers and create a macroporous surface onto the FRC to enhance bone bonding of the material. The effect of dissolution and fiber direction to the bone bonding capability of the FRC material was also tested. Three groups of FRC specimens (n = 18/group) were made of PMMA and E-glass fiber reinforcement: (a) group with continuous fibers parallel to the surface of the specimen, (b) continuous fibers oriented perpendicularly to the surface, (c) randomly oriented short (discontinuous) fibers. Fourth specimen group (n = 18) made of plain PMMA served as controls. The specimens were subjected to a solvent treatment by tetrahydrofuran (THF) of either 5, 15 or 30 min of time (n = 6/time point), and the advancement of the dissolution (front) was measured. The solvent treatment also exposed the fibers and created a surface roughness on to the specimens. The solvent treated specimens were embedded into plaster of Paris to simulate bone bonding by mechanical locking and a pull-out test was undertaken to determine the strength of the attachment. All the FRC specimens dissolved as function of time, as the control group showed no marked dissolution during the study period. The specimens with fibers along the direction of long axis of specimen began to dissolve significantly faster than specimens in other groups, but the test specimens with randomly oriented short fibers showed the greatest depth of dissolution after 30 min. The pull-out test showed that the PMMA specimens with fibers were retained better by the plaster of Paris than specimens without fibers. However, direction of the fibers considerably influenced the force of attachment. The fiber reinforcement increases significantly the dissolution speed, and the orientation of the glass fibers has great effect on the dissolving depth of the polymer matrix of the composite, and thus on the exposure of fibers. The glass fibers exposed by the solvent treatment enhanced effectively the attachment of the specimen to the bone modeling material.  相似文献   

17.
Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.  相似文献   

18.
By engineering the fiber/matrix interface, the properties of the composite can be changed significantly. In this work, we increased the effective surface area of the fiber/matrix interface, to facilitate additional stress transfer between fibers and matrix, by grafting carbon nanotubes on to carbon fibers (in the form of carbon fabric) by two different methods: (1) chemical vapor deposition (CVD) method and (2) a purely chemical method. With the CVD process, carbon nanotubes (CNT) were directly grown on carbon fiber substrate using chemical vapors. For the chemical method, CNT with carboxyl groups were grafted on functionalized carbon fiber via a chemical reaction. The morphology of CNT/carbon fibers was examined by scanning electron microscope (SEM) which revealed uniform coverage of carbon fibers with CNT in both of CVD method and chemical grafting method. CNT-grafted woven carbon fibers were used to make carbon/epoxy composites, and their mechanical properties were measured using three-point bending and tension tests which showed that those with CNT-grafted carbon fiber reinforcements using the CVD process has 11 % higher tensile strength compared to those containing carbon fibers modified with the chemical method. Also, composites with CNT-grafted carbon fibers with chemical method showed 20 % higher tensile strength compared to composites with unmodified carbon fibers. The results of tensile test revealed that both CVD and chemical grafting could significantly improve the mechanical properties of the carbon fiber composites.  相似文献   

19.
Single polymer composites (SPCs) based on polyamide 6 (PA6) were prepared by in-mold activated anionic ring-opening polymerization (AAROP) of caprolactam in the presence of PA6 textile fibers. The influence of the reinforcing fibers content, their surface treatment, as well as of the temperature of AAROP upon the morphology, crystalline structure, and mechanical properties of the resulting SPCs was followed. The presence of oriented transcrystalline layer (TCL) on the surface of the reinforcing fibers was demonstrated by means of microscopy methods. Its orientation and polymorph structure were determined by synchrotron wide-angle X-ray scattering. Studies on the mechanical behavior in tension of the SPCs showed a well-expressed growth of the stress at break (70–80 %) and deformation at break (up to 150–190 %) in composites with 15–20 wt% of reinforcements. The best mechanical properties were found in SPCs whose reinforcing fibers were solvent-pretreated prior to AAROP in order to remove the original finish. In these samples a stronger adhesion at the fiber/matrix interface was proved by scanning electron microscopy of cryofractured samples. This effect was related to a thinner TCL in which the α-to-γ polymorph transition is impeded.  相似文献   

20.
A series of organ-soluble copolyimides (co-PIs) were synthesized from 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 2,2′-bis(trifluoromethyl)-4, 4′-diaminobiphenyl (TFMB), and 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) via a one-step polymerization in N-methyl-2-pyrrolidone (NMP). The polyimide solutions were used to fabricate as-spun polyimide fiber by a wet-spinning process. SEM images of the round cross-section of the fibers indicated that a homogeneous and dense fibrous structure was produced in the coagulation bath of H2O/NMP = 90/10 (v/v) and many microfibrils appeared on the surface. The drawn fibers exhibit excellent mechanical properties, and the strength and modulus of BTDA/TFMB/BIA co-PI fibers (TFMB/BIA = 50/50) reached 2.25 and 102 GPa with a draw ratio of 3.0. The 5 % weight loss temperature of the co-PI fibers in thermogravimetric analysis spectra achieved 548–563 °C in an air atmosphere. The glass transition temperatures were found to be between 340 and 366 °C according to the DMA results. Annealed BTDA/TFMB/BIA co-PI fibers displayed distinct wide-angle X-ray patterns, and crystallinity and crystal orientation with various draw ratios were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号