首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel high performance conductive material with excellent comprehensive properties was prepared by melt-blending, and its performances were adjusted by controlling the selective location of carbon black (CB) in poly(ether ether ketone) (PEEK)/thermoplastic polyimide (TPI) matrix. With increasing the CB loadings, the morphology of PEEK/TPI blends changed from sea-island to co-continuous structure, which was owing to the selective location of CB in TPI phase. Notably, with the selective location of CB in the induced co-continuous PEEK/TPI matrix, the electrical percolation threshold was reduced to 5 wt%, which was significantly lower than that of binary PEEK/CB (9 wt%) and TPI/CB (10 wt%) composites. And the electrical conductivity of ternary PEEK/TPI/CB composites was 104 to 106 times higher than that of binary composites at identical 7.5 wt% CB loading, which was attributed to the double percolation effect. Moreover, the incorporation of CB could improve the thermal and mechanical properties effectively.  相似文献   

2.
以聚醚醚酮(PEEK)为基体树脂、碳纤维(CF)和氮化铝(AlN)为填料,通过模压成型的方法制备了抗静电耐热型CF-AlN/PEEK复合材料。采用高阻计、导热系数测定仪、热失重、差示扫描量热仪和SEM研究了CF-AlN/PEEK复合材料的抗静电性能、热性能、力学性能以及降温速率对复合材料性能的影响,并探讨了后期热处理对力学性能的影响。结果表明:当CF和AlN的质量分数均为10%时,CF-AlN/PEEK复合材料的性能较优,其表面电阻率达到108 Ω,比PEEK的表面电阻率提高了6个数量级;导热系数为0.418 W·(m·K)-1,初始分解温度高达573℃;拉伸强度提高了40.4%;降温速率越低,复合材料的熔点越高;后期热处理会影响CF-AlN/PEEK复合材料的力学性能,在270℃下热处理2 h,其拉伸强度可达146 MPa,表明在生产过程中,加工温度是影响复合材料性能的因素之一。   相似文献   

3.
A nanocomposite with soluble high-performance poly(phthalazinone ether sulfone ketone) (PPESK) as matrix and multi-walled carbon nanotube buckypaper (MWCNT-BP) as reinforcement was fabricated by hot-press processing. The morphologies, dynamic and static mechanical behavior, thermal stability of the MWCNT-BP/PPESK composites were studied using scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analyzer (TGA). SEM microphotographs revealed a high impregnation degree of the MWCNT-BP/PPESK composites. Dynamic and static mechanical analysis revealed that the nanocomposites possessed high storage modulus, and good retention rate of mechanical strength even at 250 °C, which is mainly attributed to satisfied impregnation and strong interactions between MWCNT-BP and PPESK. Thermogravimetric analysis exhibited that the nanocomposites had excellent thermal stability. These investigations confirm that MWCNT-BP can be effectively used to manufacture high-loading CNT/PPESK composites with improved properties.  相似文献   

4.
The mechanical properties, electrical and thermal conductivity of single-walled carbon nanotube (SWCNT) buckypaper (BP) embedded in poly(ether ether ketone) (PEEK) or poly(phenylene sulphide) (PPS) matrices were investigated. Dynamic mechanical analysis demonstrated a significant increase in the storage modulus and glass transition temperature of the polymers, indicating strong SWCNT–matrix interfacial adhesion. The composites showed improved stiffness and strength, as revealed by tensile and flexural tests, while their ductility and toughness moderately decreased. Exceptional enhancements in the electrical and thermal conductivity of PPS and PEEK were found. Their Young’s moduli and thermal conductivities were compared with the predictions of theoretical models. This investigation indicates that SWCNT-BPs possess great potential to improve the performance of thermoplastics and satisfy a wide variety of demands in multi-disciplinary technological applications.  相似文献   

5.
The mechanical, thermal and electrical properties of modified AlN/polyetherimide (PEI) composites were investigated. It revealed that the surface of AlN modified by silane could effectively increase the adhesion with matrix, which was beneficial for AlN to reinforce the polyetherimide matrix. After silane modification, the AlN showed good dispersion and wetibility in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The tensile strength, modulus, electrical and thermal stability were improved with the increasing of AlN content. The tensile strength of AlN/PEI composites increased by 27% when 12.6 vol.% AlN was added to neat polyetherimide. The thermal conductivity of the 57.4 vol.% AlN/PEI composites increased three times compared with neat polyetherimide. Test results indicate that the silane grafted AlN incorporated into the polyetehetimide matrix effectively enhance the thermal stability, thermal conductivity and mechanical properties of the polyetherimide composites.  相似文献   

6.
Pristine carbon nanotubes (CNTs) and noncovalently functionalized carbon nanotubes (f-CNTs) were used to prepare poly(ether ether ketone) (PEEK) composites (CNTs/PEEK and f-CNTs/PEEK) via melt blending. Noncovalently functionalized multiwalled nanotubes were synthesized using hydrogen-bonding interactions between sulfonic groups of sulfonated poly(ether ether ketone) (SPEEK) and carboxylic groups of nanotubes treated by acid (CNTs–COOH). The effects of these two kinds of nanotubes on the mechanical properties and crystallization behavior of PEEK were investigated. CNTs improved mechanical properties and promoted the crystallization rate of PEEK as a result of heterogeneous nucleation. Better enhancement of mechanical properties appeared in the f-CNTs/PEEK composites, which is ascribed to the good interaction between f-CNTs and PEEK. However, the strong interaction of f-CNTs and PEEK chains decreased the crystallization rate of PEEK for high content of f-CNTs.  相似文献   

7.
采用共混法用聚醚醚酮(PEEK)改性环氧树脂(EP),借助差示扫描量热分析(DSC)确定了环氧树脂的固化工艺,测试了共混体系的工艺性能,研究了聚醚醚酮含量对环氧树脂力学性能的影响。借助扫描电子显微镜(SEM)对材料断裂面的形态结构进行了分析,探讨了体系的形态结构与冲击性能之间的关系。结果表明,在改性材料的韧性有所提高的同时,压缩强度、马丁耐热都没有降低。从断裂面的形态来看,是属于韧性断裂。当PEEK的加入量为6%时,韧性最好,达到19.1kJ/m~2,比纯的环氧树脂增加了107.6%。  相似文献   

8.
聚醚醚酮增韧改性环氧树脂   总被引:4,自引:1,他引:3  
采用共混法用聚醚醚酮(PEEK)改性环氧树脂(EP),借助差示扫描量热分析(DSC)确定了环氧树脂的固化工艺,测试了共混体系的工艺性能,研究了聚醚醚酮含量对环氧树脂力学性能的影响.借助扫描电子显微镜(SEM)对材料断裂面的形态结构进行了分析,探讨了体系的形态结构与冲击性能之间的关系.结果表明,在改性材料的韧性有所提高的同时,压缩强度、马丁耐热都没有降低.从断裂面的形态来看,是属于韧性断裂.当PEEK的加入量为6%时,韧性最好,达到19.1 kJ/m2,比纯的环氧树脂增加了107.6%.  相似文献   

9.
采用浓H2SO4氧化聚醚醚酮(PEEK)得到磺化聚醚醚酮(SPEEK),以3,3'-二烯丙基双酚A (BBA)、双酚A双烯丙基醚(BBE)为活性稀释剂、SPEEK为改性剂、双马来酰亚胺(BMI)树脂为基体,浇注成型制备SPEEK/BBA-BBE-BMI复合材料,同时研究了SPEEK的改性效果及复合材料微观形貌与力学性能。结果表明:SPEEK改性效果较好,在FTIR中存在明显的磺酸基团特征峰,SEM和能谱分析表明,SPEEK微观形貌变化明显,硫元素含量较高;SPEEK/BBA-BBE-BMI复合材料的微观形貌显示,SPEEK在基体中呈现直径为2 μm左右的多孔状两相结构,且分散均匀,此多孔结构改善了复合材料的断裂形貌,由脆性断裂转变为韧性断裂,当断裂纹遇到SPEEK组分时受阻而出现不规则发散,此变化会赋予复合材料更加优异的性能。力学性能测试结果显示,当SPEEK含量为5wt%时,SPEEK/BBA-BBE-BMI复合材料的弯曲强度和冲击强度达到最佳,分别为147.93 MPa和15.74 kJ/mm2,分别比基体提高了49.47%和66.21%。  相似文献   

10.
The mechanical properties of insert-molded poly(ether imide) (PEI)/carbon fiber poly(etheretherketone) (CF PEEK) have been examined. Bimaterial composite specimens were constructed by injecting CF PEEK into a mold containing one-half of a PEI tensile specimen. These PEI/CF PEEK composites retained much of their strength and dimensional integrity at temperatures as high as 200°C. Variations in test speed had little affect on breaking strains or stiffness. For two grades of PEI examined, properties were independent of the molecular weight of the PEI. Ultimate properties and fracture surfaces suggested good adhesion between the PEI and CF PEEK, possibly aided by miscibility between the two materials. The PEI/CF PEEK bimaterial composites behaved similarly to PC/CF PEEK specimens, but exhibited higher breaking stresses and moduli, both at room and elevated temperatures.  相似文献   

11.
Graphene, a single layer of carbon atoms in a two-dimensional lattice, has attracted considerable attention owing to its unique physical, chemical and mechanical properties. In particular, because of its excellent thermal properties such as high thermal conductivity and good thermal stability, graphene has been regarded as a one of the promising candidates for the reinforcing fillers on the polymer composites field. In this study, we prepared the poly(methyl methacrylate) (PMMA)/graphene oxide (GO) nanocomposite by a simple solution mixing process, and examined the thermal reinforcing effects of GO on a PMMA matrix. Using thermogravimetric analysis, differential scanning calorimeter, and thermal conductivity meter, we investigated the effects of GO on the thermal properties of PMMA/GO nanocomposites. With 3 wt% of GO loading, the glass transition temperature (Tg) of the PMMA/GO nanocomposite were increased by more than 7 degrees C and the thermal conductivity of which also improved 1.8 times compared to pure PMMA.  相似文献   

12.
铜(Cu)基复合材料具有优异的力学、热学、电学及耐磨和耐腐蚀等性能,广泛应用于各种工业技术领域。石墨烯(Graphene,Gr)具有二维平面结构和优异的综合性能,是金属基复合材料理想的增强相。石墨烯增强铜基复合材料拓展了铜及其合金的应用范围,适当的制备方法可以使其在保持优异导电导热性能的同时拥有更好的力学性能。石墨烯在铜基体中的存在形式主要以还原氧化石墨烯、石墨烯纳米片或与金属氧化物/碳化物纳米颗粒连接,旨在增强两者之间的界面结合。因此,石墨烯在铜基体中的结构完整性及存在形式直接影响了其性能的优劣。本文综述了Cu/Gr复合材料的制备及模拟方法、复合材料的性能评价及力学性能与功能特性的相互影响规律。指明Cu/Gr复合材料的发展关键在于:(1)分散性与界面结合;(2)三维石墨烯结构的构建;(3)界面结合对力学性能与功能特性的影响及两者间的相互协调。  相似文献   

13.
采用改进的水热法制备二氧化钛/石墨烯(TiO2/G)复合导电材料,并研究水热温度以及石墨烯用量对TiO2/G复合材料导电性的影响。利用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和电化学阻抗谱等测试手段对复合材料的结构,微观形貌以及导电性能进行表征,并确定最佳的水热温度以及石墨烯的最佳添加量。结果表明:石墨烯添加量为5%(质量分数),水热温度为160℃,TiO2/G复合材料的导电性最佳,其电阻率为13.46Ω·cm。复合材料中TiO2纳米颗粒为球状的锐钛矿相,直径为100~200nm左右,且均匀生长在石墨烯片层表面。其中,TiO2纳米颗粒生长于石墨烯片层上,有效地阻止石墨烯片层的聚集,有利于石墨烯片层间形成导电网络,提高电子迁移效率,赋予二氧化钛复合材料优异的导电性能。  相似文献   

14.
In order to explore practical application of graphene as novel conductive fillers in the filed of composite materials, we prepared anti-static multi-layer graphene (MLG) filled poly(vinyl chloride) (PVC) composite films by using conventional melt-mixing method, and investigated electrical conductivity, tensile behavior, and thermal properties of the MLG/PVC composite films. We found that the presence of MLG can greatly increase electrical conductivity of the MLG/PVC composites, and the surface electrical conductivity of the MLG/PVC composites is less than 3 × 108 Ohm/square when the MLG loading is about 3.5 wt%, meeting anti-static requirement for commercial anti-static PVC films. On the other hand, the MLG/PVC composites exhibited higher tensile modulus and higher glass transition temperature than neat PVC, which is closely associated with crumpled morphology of the MLG and good compatibility between components of the MLG/PVC composites. By virtue of its satisfied anti-static performance and high mechanical properties, the MLG/PVC composites exhibit great potential to be used as high-performance antistatic materials in many fields.  相似文献   

15.
The phase behaviour and the mechanical properties of binary blends composed of poly(ether ether ketone) and poly(ether sulphone) have been studied both in the amorphous state and after crystallization of poly(ether ether ketone).Differential scanning calorimetry and dynamical mechanical analysis clearly show the existence of phase separation in the blends. Density measurements confirm the absence of strong interactions between the blend components, as well as the slight effect of PES on the crystallization of PEEK.The mechanical properties of the quenched, amorphous blends remain surprisingly good in spite of the observed immiscibility, however, slowly cooled, crystalline blends appear as brittle materials.  相似文献   

16.
This work focuses on the effects of the introduction of unwrapped and wrapped single-walled carbon nanotubes (SWCNTs) on the quality (i.e. void content) and a range of different properties of polyether ether ketone (PEEK)/glass fiber (GF) laminates fabricated through hot-compression processing. The quality of the developed multiscale laminates was evaluated by non-destructive inspection techniques (ultrasonic C-scan and thermography), density measurements as well as optical and scanning electron microscopy analyses. The in-plane and transverse thermal and electrical conductivities as well as Short-Beam-Shear (SBS) strength were measured at different locations within each composite panel. It was found that the addition of SWCNT can have a considerable influence on the porosity of manufactured laminates. In summary, while unwrapped SWCNT generally improved the thermal and electrical properties of the PEEK/GF laminates, composites incorporating compatibilizer exhibited the lowest porosity, the highest electrical conductivity and mechanical properties.  相似文献   

17.
Multi-walled carbon nanotubes (MWCNTs) were functionalized with a carboxyl group (-COOH) to achieve better interfacial adhesions with both phases of the poly(ether ether ketone) (PEEK) and liquid crystalline polymer (LCP) in their blend. These strong interfacial interactions among the functionalized MWCNTs, PEEK and LCP improved the mechanical properties of the polymer blend. Three different weight percentages (0.6%, 1.2% and 1.8%) of acid modified CNTs were used with PEEK-LCP blend, for the preparation of nanocomposites. In PEEK-LCP blend, the ratio of PEEK and LCP was maintained as 10:6 respectively. The tensile strength and modulus of the composites were improved by 51% and 73% respectively with the incorporation of only 1.2% of MWCNT-COOH as compared to the unfilled PEEK/LCP blend. Moreover, careful studies of the molecular interaction, morphological, dynamic mechanical and thermal properties confirmed that a better miscibility between PEEK and LCP had been constituted in the presence of MWCNT-COOH. Therefore, it was found that the functionalized MWCNTs not only played the traditional role as reinforcing filler, but also performed a novel role as a compatibilizer for the PEEK/LCP blends.  相似文献   

18.
Electrically conductive and thermally stable polyamide 6 (PA 6) nanocomposites were prepared through one-step in situ polymerization of ε-caprolactam monomer in the presence of electrically insulating and thermally unstable graphene oxide (GO) nanosheets. These nanocomposites show a low percolation threshold of ∼0.41 vol.% and high electrical conductivity of ∼0.028 S/m with only ∼1.64 vol.% of GO. Thermogravimetric analysis and X-ray photoelectron spectroscopy results of GO before and after thermal treatment at the polymerization temperature indicate that GO was reduced in situ during the polymerization process. X-ray diffraction patterns and scanning electron microscopy observation confirm the exfoliation of the reduced graphene oxide (RGO) in the PA 6 matrix. The low percolation threshold and high electrical conductivity are attributed to the large aspect ratio, high specific surface area and uniform dispersion of the RGO nanosheets in the matrix. In addition, although GO has a poor thermal stability, its PA 6 nanocomposite is thermally stable with a satisfactory thermal stability similar to those of neat PA 6 and PA 6/graphene nanocomposite. Such a one-step in situ polymerization and thermal reduction method shows significant potential for the mass production of electrically conductive polymer/RGO nanocomposites.  相似文献   

19.
A small quantity of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) were introduced into the poly(vinylidene fluoride) (PVDF)/GNP and PVDF/CNT composites, respectively, to prepare the corresponding ternary PVDF/CNT/GNP and PVDF/GNP/CNT composites. The results demonstrated that adding CNTs into the PVDF/GNP composites greatly promoted the formation of the hybrid network structure of fillers. This was much different from the scenario that adding GNPs into the PVDF/CNT composites. GNPs and CNTs exhibited excellent nucleation effects for the crystallization of PVDF matrix; however, the variation of the PVDF crystallinity was small. Adding CNTs into the PVDF/GNP composites greatly enhanced the electrical conductivity of the PVDF/CNT/GNP composites. This was also different from the scenario of the PVDF/GNP/CNT composites. Furthermore, the PVDF/CNT/GNP composites exhibit higher thermal conductivity and higher synergistic efficiency compared with the PVDF/GNP/CNT composites. The conductive mechanisms and the synergistic effects of the ternary composites were then analyzed.  相似文献   

20.
通过真空驱动自组装法及蒸汽处理得到结构疏松的硅/碳纳米管/石墨烯自支撑负极材料(Si/CNTs/GP)。纳米硅颗粒(50 nm)为活性物质, 均匀分布在石墨烯片层结构中间; 石墨烯作为碳基体, 通过自组装构筑形成二维导电网络; 碳纳米管(CNTs)具有超高导电性和良好的力学强度, 它通过吸附作用均匀分布在石墨烯基体上形成导电的支撑网络结构。经过蒸汽处理后, 石墨烯层间距明显增大, 层与层之间不再是紧密堆叠的结构, 而是形成一种疏松、褶皱、内部空隙丰富的片层结构。Si/CNTs/GP负极材料中丰富的内部空穴和贯穿孔洞, 提供了材料很高的比表面积, 能有效提高电解液对材料的浸润性, 极大缩短了离子传输距离。同时这些内部空穴也有效缓冲硅充放电时的体积膨胀, 提高了材料的结构稳定性和电化学性能。该负极材料在4 A/g的大电流密度下容量维持在600 mAh/g, 表现出良好的大电流循环稳定性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号