首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
Cai SS  Syage JA 《Analytical chemistry》2006,78(4):1191-1199
In this work, we compare the quantitative accuracy and sensitivity of analyzing lipids by atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI) LC/MS. The target analytes include free fatty acids and their esters, monoglyceride, diglyceride, and triglyceride. The results demonstrate the benefits of using LC/APPI-MS for lipid analysis. Analyses were performed on a Waters ZQ LC/MS. Normal-phase solvent systems were used due to low solubility of these compounds in aqueous reversed-phase solvent systems. By comparison, APPI offers lower detection limits, generally highest signal intensities, and the highest S/N ratio. APPI is 2-4 times more sensitive than APCI and much more sensitive than ESI without mobile-phase modifiers. APPI and APCI offer comparable linear range (i.e., 4-5 decades). ESI sensitivity is dramatically enhanced by use of mobile phase modifiers (i.e., ammonium formate or sodium acetate); however, these ESI adduct signals are less stable and either are nonlinear or have dramatically reduced linear ranges. Analysis of fish oils by APPI shows significantly enhanced target analyte intensities in comparison with APCI and ESI.  相似文献   

2.
A method for the selective concentration of dissolved organic phosphorus (DOP) from complex surface water samples for the first time allows mass spectral characterization of individual DOP compounds in phosphorus-limited ecosystems. The entire dissolved organic matter (DOM) pool is first separated according to molecular weight by tangential cross-flow ultrafiltration (CFF). DOP is selectively isolated and concentrated from CFF fractions by a barium precipitation procedure. The DOP precipitate is then reconstituted in distilled water and excess barium, and other cations are removed with an ion-exchange resin. The DOP isolation/concentration step can provide up to 15-fold concentration and 300-fold concentration of high molecular weight DOP when combined with the inherent concentration provided by CFF. The procedure also removes cations and most of the background DOM, leaving DOP in a matrix suitable for electrospray ionization and mass spectral characterization. Model organic phosphate standards representative of DOP species expected in aquatic environments were used to evaluate the technique. It was then applied to a series of high molecular weight (>1000) CFF retentates isolated from sites within the Everglades Nutrient Removal (ENR) treatment wetland. The elemental compositions of several individual DOP compounds observed at different sites within the ENR were determined by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.  相似文献   

3.
In this work, we describe the performance of an atmospheric pressure photoionization (APPI) source for sampling liquid flows. The results presented here primarily focus on the mechanism of direct photoionization (PI), as compared to the dopant mechanism of PI. Measured detection limits for direct APPI were comparable to atmospheric pressure chemical ionization (APCI; e.g., 1 pg for reserpine). The ion signal is linear up to 10 ng injected quantity, with a useful dynamic range exceeding 100 ng. Evidence is presented indicating that APPI achieves significantly better sensitivity than APCI at flow rates below 200 microL/min, making it a useful source for capillary liquid chromatography and capillary electrophoresis. Results are presented indicating that APPI is less susceptible to ion suppression and salt buffer effects than APCI and electrospray ionization (ESI). The principal benefit of APPI, as compared to other ionization sources, is in efficiently ionizing broad classes of nonpolar compounds. Thus, APPI is an important complement to ESI and APCI by expanding the range and classes of compounds that can be analyzed. In this paper, we also discuss the role of direct APPI vs PI-induced APCI using dopants.  相似文献   

4.
Nearly a decade after first commercialization, high field asymmetric waveform ion mobility spectrometry (FAIMS) has yet to find its place in routine chemical analysis. Prototypes have been used to demonstrate the utility of this separation technique combined with mass spectrometry (MS). Unfortunately, first generation commercial FAIMS instruments have gone practically unused by early adopters. Here, we show this to be due to poor ion transmission in the FAIMS-MS source interface. We present simple instrumental modifications and optimization of experimental conditions to achieve good performance from the first generation commercial FAIMS device (the Ionalytics Selectra) coupled to a high resolution Q-TOF-MS. In combination with nanospray ionization, we demonstrate for the first time the nontarget analysis of urine by FAIMS with minimal sample preparation. We show the unique suitability of electrospray ionization (ESI)-FAIMS-MS for identification of low abundance species such as urinary biomarkers of damage of nucleic acids in a complex biological matrix. The elimination of electrospray noise and matrix components by FAIMS and the continuous flow of analytes through FAIMS for accurate and tandem mass analysis produce high quality spectral data suitable for structural identification of unknowns. These characteristics make ESI-FAIMS-MS ideal for nontarget identification, even when compared to high efficiency LC-ESI-MS.  相似文献   

5.
A novel approach using a combination of capillary electrophoresis/mass spectrometry (CE/MS) and off-line Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) revealed the structural details of acidic constituents of atmospheric organic aerosol. Both techniques utilized electrospray ionization (ESI), a soft ionization method, to facilitate the analysis of complex mixtures of organic compounds. CE/ESI-MS using an UltraTrol LN-precoated capillary and acidic background electrolytes at different pH values (2.5 and 4.7) was used to differentiate between weak (carboxylic) and strong (sulfonic) organic acids. On the basis of the electrophoretic mobility, m/z constraints from CE/ESI(-)-MS, and elemental composition information retrieved from off-line FTICR-MS, a variety of aliphatic and aromatic carboxylic acids (CHO-bearing molecules), nitrogen-containing carboxylic acids (CHON-bearing molecules), organosulfates (CHOS-bearing molecules), and (nitrooxy)organosulfates (CHONS-bearing molecules) were tentatively identified in the Oasis-HLB-extracted urban PM(2.5) (particulate matter with an aerodynamic diameter of <2.5 μm). The chemical known/unknown structures of detected compounds were confirmed by the semiempirical Offord model (effective mobility linearly correlated to Z/M(2/3)). The majorities of the identified compounds are products of atmospheric reactions and are known contributors to secondary organic aerosols.  相似文献   

6.
The applicability of different ionization techniques, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and a novel atmospheric pressure photoionization (APPI), were tested for the identification of the phase II metabolites of apomorphine, dobutamine, and entacapone in rat urine and in vitro incubation mixtures (rat hepatocytes and human liver microsomes). ESI proved to be the most suitable ionization method; it enabled detection of 22 conjugates, whereas APCI and APPI showed only 12 and 14 conjugates, respectively. Methyl conjugates were detected with all ionization methods. Glucuronide conjugates were ionized most efficiently with ESI. Only some of the glucuronides detected with ESI were detected with APCI and APPI. Sulfate conjugates were detected only with ESI. MS/MS experiments showed that the site of glucuronidation or sulfation could not be determined, since the primary cleavage was a loss of the conjugate group (glucuronic acid or SO3), and no site-characteristic product ions were formed. However, it may be possible to determine the site of methylation, since methylated products are more stable than glucuronides or sulfates. Furthermore, the loss of CH3 is not necessarily the primary cleavage, and site characteristic products may be formed. Identification and comparison of conjugates formed from the current model drugs were successfully analyzed in different biological specimens of common interest to biomedical research. A fairly good relation was obtained between the data from in vivo and in vitro models of drug metabolism.  相似文献   

7.
Hu B  So PK  Chen H  Yao ZP 《Analytical chemistry》2011,83(21):8201-8207
Electrospray ionization (ESI) is a mass spectrometric technique widely used in various fields including chemistry, biology, medicine, pharmaceutical industry, clinical assessment, and forensic science. In this study, we report a simple and economical ESI-mass spectrometry (MS) technique, which makes use of disposable wooden tips (wooden toothpicks) for loading and ionization of samples. Samples could be loaded by normal pipetting onto the tip or simply dipping the tip into sample solutions. The hydrophilic and porous nature of wood allows effective adhesion of the sample solution for durable ion signals. The tip can be directly connected to nano-ESI ion sources of various mass spectrometers. Upon application of high voltage to the tip, desirable mass spectra could be obtained. We demostrated that this new technique is applicable for analysis of various samples, including organic compounds, organometallic compounds, peptides, proteins, and samples that cannot be directly analyzed by conventional ESI techniques, e.g., slurry samples and powder samples. The slim and hard properties of the wooden tip enable sampling from specific locations such as corners and small openings, indicating potential applications of the new technique in forensic investigations. The observation of electrospray ionization from wooden materials also allows us to get new insights into the materials that can be directly ionized for mass spectrometric analysis.  相似文献   

8.
An ion drift-chemical ionization mass spectrometry (ID-CIMS) technique has been developed to detect and quantify trace gases, including volatile organic compounds and inorganic species. The trace species are chemically ionized into positive or negative product ions with a well-controlled ion-molecule reaction time. The ID-CIMS method allows for quantification of the trace gases without the necessity of performing calibrations with authentic standards for the trace gases. Demonstrations of the ability of ID-CIMS to accurately quantify isoprene and HNO3 in a laboratory setting are presented. The results illustrate that the ID-CIMS technique facilitates detection and quantification of organic and inorganic species in laboratory kinetic investigations and field measurements.  相似文献   

9.
Organic compounds containing a variety of functional groups have been analyzed using aerosol time-of-flight mass spectrometry. Both positive and negative laser desorption/ionization mass spectra have been acquired for compounds of relevance to ambient air particulate matter, including polycyclic aromatic hydrocarbons, heterocyclic analogues, aromatic oxygenated compounds such as phenols and acids, aliphatic dicarboxylic acids, and reduced nitrogen species such as amines. In many cases, positive ion mass spectra are similar to those found in libraries for 70-eV electron impact mass spectrometry. However, formation of even-electron molecular ions due to adduct formation also plays a major role in ion formation. Negative ion mass spectra suggest that organic compounds largely disintegrate into carbon cluster fragments (C(n)- and C(n)H-). However, information about the heteroatoms present in organic molecules, especially nitrogen and oxygen, is carried dominantly by negative ion spectra, emphasizing the importance of simultaneous analysis of positive and negative ions in atmospheric samples.  相似文献   

10.
Good reliability of Caco-2 permeability studies requires competent sampling and analytical methods to ensure the comparability of day-to-day experiments. In this work, two n-in-one LC/MS/MS methods based on two different ionization techniques were developed and validated for a group of reference compounds; eight of them are recommended by the Food and Drug Administration (FDA) for the evaluation of oral drug permeability. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), as an interface for quantitative LC/MS analysis was evaluated in comparison to the electrospray ionization (ESI). Generally, the validation parameters, including sensitivity, accuracy, and repeatability, were comparable for the APPI and ESI methods. The main difference was that the linear quantitative range of APPI was 3-4 orders of magnitude (r(2) >/= 0.998) whereas in ESI it was typically 2-3 orders of magnitude (r(2) >/= 0.990). By the APPI and ESI methods, the simultaneous analysis of nine highly heterogeneous compounds was achieved within 5.5-7 min, which leads to significant savings in time and cost of the analyses. The successful validation data indicate the usefulness of both the methods for the rapid and sensitive (LOD values typically 相似文献   

11.
A novel chemical ionization source for organic mass spectrometry is introduced. This new source uses a glow discharge in the flowing afterglow mode for the generation of excited species and ions. The direct-current gas discharge is operated in helium at atmospheric pressure; typical operating voltages and currents are around 500 V and 25 mA, respectively. The species generated by this atmospheric pressure glow discharge are mixed with ambient air to generate reagent ions (mostly ionized water clusters and NO+), which are then used for the ionization of gaseous organic compounds. A wide variety of substances, both polar and nonpolar, can be ionized. The resulting mass spectra generally show the parent molecular ion (M+ or MH+) with little or no fragmentation. Proton transfer from ionized water clusters has been identified as the main ionization pathway. However, the presence of radical molecular ions (M+) for some compounds indicates that other ionization mechanisms are also involved. The analytical capabilities of this source were evaluated with a time-of-flight mass spectrometer, and preliminary characterization shows very good stability, linearity, and sensitivity. Limits of detection in the single to tens of femtomole range are reported for selected compounds.  相似文献   

12.
Electrospray-assisted laser desorption/ionization (ELDI), an ionization method that combines laser desorption and electrospray ionization (ESI), can be used under ambient conditions to characterize organic compounds (including FD&C dyes, amines, extracts of a drug tablet) separated in the central track on a thin-layer chromatography (TLC) plate coated with either reversed-phase C18 particles or normal-phase silica gel. After drying, the TLC plate was placed on an acrylic sample holder set in front of the sampling skimmer of an ion trap mass analyzer. The chemicals at the center of the TLC plate were analyzed by pushing the sample holder into the path of a laser beam with a syringe pump. The molecules in the sample spot were desorbed by continuously irradiating the surface of the TLC plate with a pulsed nitrogen laser. Then, the desorbed sample molecules entered an ESI plume where they were ionized through the reactions with the charged species (including protons, hydronium ions and their cluster ions, solvent ions, and charged droplets) generated by electrospraying a methanol/water solution. MS/MS analyses were also performed to further characterize the analytes. The detection limit of TLC/ELDI/MS is approximately 10(-6) M. This was evaluated by using FD&C red dye as the standard. A linear relationship was found for the calibration curve with the concentration of FD&C red dye ranged from 10(-3) to 10(-6) M.  相似文献   

13.
A generic high-performance liquid chromatography (HPLC) system interfaced with an atmospheric pressure photoionization (APPI) source and a tandem mass spectrometer was developed for the quantitative determination of small molecules in plasma in support of exploratory in vivo pharmacokinetics. This report summarizes the effects of variations in reversed-phase mode HPLC conditions such as mobile-phase flow rate, solvent composition, organic modifier content, and nebulizer temperature on the photoionization efficiency of both clozapine and lonafarnib. The matrix ionization suppression effect on this method was investigated using the postcolumn infusion technique. The procedure was used to quantitate plasma levels following oral administration of 42 drug discovery compounds to rats. The pharmacokinetic results of 42 drug discovery compounds in rats evaluated by both APPI and atmospheric pressure chemical ionization interfaces were found to be well correlated.  相似文献   

14.
The ionization mechanism in dopant-assisted atmospheric pressure photoionization and the effect of solvent on the ionization efficiency was studied using 7 naphthalenes and 13 different solvent systems. The ionization efficiency was 1-2 orders of magnitude higher with dopant than without, indicating that the photoionization of the dopant initiates the ionization process. In positive ion mode, the analytes were ionized either by charge exchange or by proton transfer. Charge exchange was favored for low proton affinity solvents (water, hexane, chloroform), whereas the addition of methanol or acetonitrile to the solvent initiated proton transfer. In negative ion mode, the compounds with high electron affinity were ionized by electron capture or by charge exchange and the compounds with high gas-phase acidity were ionized by proton transfer. In addition, some oxidation reactions were observed. All the reactions leading to ionization of analytes in negative ion mode are initiated by thermal electrons formed in photoionization of toluene. The testing of different solvents showed that addition of buffers such as ammonium acetate, ammonium hydroxide, or acetic acid may suppress ionization in APPI. The reactions are discussed in detail in light of thermodynamic data.  相似文献   

15.
Commercial explosives are complex mixtures that contain not only the active explosive agent(s) but also a host of other organic and inorganic compounds. The ultrahigh mass resolving power (m/delta m50% >200,000) and mass accuracy (<1 ppm) of electrospray ionization Fourier transform ion cyclotron resonance (ESI FTICR) mass spectrometry allow for definitive identification of various species in TNT, RDX, and HMX. We are thereby able to correct prior misassignments of the elemental compositions of the most abundant negative ions from electrospray of RDX and HMX. Although the (known) active agents of many explosives may be identified by low-resolution MS or MS/MS, it is the other characteristic components (indigenous or artificial additives) whose presence and elemental composition can potentially identify the source of the product. ESI FTICR mass spectrometry of smokeless powder, TNT, and Powermite resolves and identifies numerous nonactive ingredients, many of which are recovered in a postblast residue. In contrast, the residue recovered from an explosion of military C4 yielded several species derived from RDX but virtually none from other ingredients.  相似文献   

16.
Atmospheric pressure chemical ionization was compared with electrospray ionization and atmospheric pressure photoionization (APPI) as an interface of high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) for the determination of cyclosporin A (CsA) in biological fluids in support of in vivo pharmacodynamic studies. These ion sources were investigated in terms of their suitability and sensitivity for the detection of CsA. The effects of the eluent flow rate and composition as well as the nebulizer temperatures on the photoionization efficiency of CsA in the positive ion mode under normal-phase HPLC conditions were explored. The ionization mechanism in the APPI environment with and without the use of the dopant was studied using two test compounds and a few solvent systems employed for normal-phase chromatography. The test compounds were observed to be ionized mainly by proton transfer with the self-protonated solvent molecules produced through photon irradiation. Furthermore, ion suppression due to sample matrix interference in the normal-phase HPLC-APPI-MS/MS system was monitored by the postcolumn infusion technique. The applicability of these proposed HPLC-API-MS/MS approaches for the determination of CsA at low nanogram per milliliter levels in rat plasma was examined. These proposed methods were then compared with respect to specificity, linearity, detection limit, and accuracy.  相似文献   

17.
In a previous study on capillary electrophoresis-atmospheric pressure photoionization mass spectrometry (CE-APPI-MS), it was observed that the formation of gas-phase ions does not always proceed through photon-induced mechanisms (Hommerson, P.; Khan, A. M.; De Jong, G. J.; Somsen, G. W. Electrophoresis 2007, 28, 1444-1453). That is, analyte signals were observed when the VUV excitation source was switched off. The aim of the present study was to further explore this photon-independent ionization (PII) process. Parameters such as MS capillary voltage, compound nature, background electrolyte (BGE) composition, and presence of dopants were studied using a CE-APPI-MS setup. Infusion experiments showed a relatively low MS capillary voltage of approximately 600 V to be the main prerequisite for PII. Quaternary ammonium compounds showed strong responses in PII-MS but could not be observed in dopant-assisted APPI. Basic amines could be ionized by both photoionization (PI) and PII, whereas neutral compounds (steroids) could only be observed using PI. Nonvolatile BGEs appeared to cause substantial ionization suppression in PII, while PI signals remained largely unaffected. Selection of the proper interface and MS settings allowed PI and PII to proceed simultaneously, which broadened the range of compounds that could be analyzed in a single CE-APPI-MS run. Based on the observed characteristics, it is concluded that PII most probably occurs by a liquid-phase ionization mechanism, which appears to arise in the APPI source when specific conditions are selected.  相似文献   

18.
Zhou X  Shi Q  Zhang Y  Zhao S  Zhang R  Chung KH  Xu C 《Analytical chemistry》2012,84(7):3192-3199
A novel technique was developed for characterization of saturated hydrocarbons. Linear alkanes were selectively oxidized to ketones by ruthenium ion catalyzed oxidation (RICO). Branched and cyclic alkanes were oxidized to alcohols and ketones. The ketones were then reduced to alcohols by lithium aluminum hydride (LiAlH(4)). The monohydric alcohols (O(1)) in the products obtained from the RICO and RICO-LiAlH(4) reduction reactions were characterized using negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for identification of iso-paraffins, acyclic paraffins and cyclic paraffins. Various model saturated compounds were used to determine the RICO reaction and ionization selectivity. The results from the FTICR MS analysis on the petroleum distillates derived saturated fraction were in agreement with those from field ionization gas chromatography time-of-flight mass spectrometry (FI GC-TOF MS) analysis. The technique was also used to characterize a petroleum vacuum residue (VR) derived saturates. The results showed that the saturated molecules in the VR contained up to 11 cyclic rings, and the maximum carbon number was up to 92.  相似文献   

19.
Complex natural organic mixtures such as petroleum require ultrahigh mass spectral resolution to separate and identify thousands of elemental compositions. Here, we incorporate a custom-built, voltage-compensated ICR cell for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), based on a prior design by Tolmachev to produce optimal mass resolution. The compensated ICR cell installed in a custom-built 9.4 T FTICR mass spectrometer consists of seven cylindrical segments with axial proportions designed to generate a dc trapping potential that approaches an ideal three-dimensional axial quadrupolar potential. However, the empirically optimized compensation voltages do not correspond to the most quadrupolar trapping field. The compensation electrodes minimize variation in the reduced cyclotron frequency by balancing imperfections in the magnetic and electric field. The optimized voltages applied to compensation electrodes preserve ion cloud coherence for longer transient duration by approximately a factor of 2, enabling separation and identification of isobaric species (compounds with the same nominal mass but different exact mass) common in petroleum, such as C(3) vs SH(4) (separated by 3.4 mDa) and SH(3)(13)C vs (12)C(4) (separated by 1.1 mDa). The improved performance of the ICR cell provides more symmetric peak shape and better mass measurement accuracy. A positive ion atmospheric pressure photoionization (APPI) petroleum spectrum yields more than 26,000 assigned peaks, Fourier-limited resolving power of 800,000 at m/z 500 (6.6 s transient duration), and 124 part per billion root mean square (rms) error. The tunability of the compensation electrodes is critical for optimal performance.  相似文献   

20.
Atmospheric aerosols are subject to be responsible for human health effects. In this context, besides mass and number concentration of particles, their chemical composition has gained interest recently. However, knowledge about the organic content of particulate matter is still relatively scarce; i.e., only 10-40% of compounds present in the aerosol are as yet identified. By means of a newly developed measurement technique, thermal desorption/photoionization time-of-flight mass spectrometry (TOFMS), organic species evolved from urban aerosol samples collected at Augsburg, Germany, are analyzed. Thereby, compounds desorbed according to a temperature protocol following procedures for OC/EC analysis (120, 250, and 340 degrees C as desorbing temperatures) are ionized by soft, fragmentationless resonance multiphoton ionization (REMPI) and single photon ionization (SPI), respectively. With REMPI-TOFMS, a large variety of PAH is detectable. A comprehensive analysis is enabled by adding SPI-TOFMS, which gives access to aliphatic and carbonylic hydrocarbons as well as alkanoic acids and esters. Analysis of the data showed a high abundance of phenol and guiacol as well as retene, which are known markers for wood combustion. Similar patterns were found with ash from spruce wood combustion. An increase of volatile substances at 340 degrees C gave rise to the suggestion that these compounds are re-formed by pyrolytic decomposition reactions from oligomeric, polymeric, and polyfunctional oxygenated species. This was corroborated by the investigation of the behavior of cellulose acetate, which exhibited a similar pattern in its SPI-TOFMS spectrum at 340 degrees C as the aerosol. More thorough investigations of urban aerosol and source material with respect to problems such as the mass closure of carbonaceous material, indications for source apportionment, and allotment of organic species on a molecular level to fractions of organic and elemental carbon seem feasible with this measurement method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号