首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effects of hydrogen charge on cyclic stress‐strain properties, slip band morphology and crack behaviour of annealed medium carbon steels (JIS‐S45C) were studied. The total strain range of the stress‐strain hysteresis loop in the hydrogen‐charged specimen was smaller than that in the uncharged specimen. Localized slip bands were observed in the hydrogen‐charged specimen, while the slip bands were widely and uniformly distributed in the uncharged specimen. It is presumed that the decrease in the total strain range of the hysteresis loop is due to the slip localization caused by the hydrogen charge and cyclic loading. The sites of fatigue crack initiation were mostly at grain boundaries in the uncharged specimen. The sites of crack initiation in the hydrogen‐charged specimen were not only at grain boundaries but also at slip bands inside ferrite grains. These results imply that hydrogen enhances dislocation mobility along slip bands and results in slip localization. These slip bands then attract hydrogen. This mechanism of hydrogen ‐ slip band interaction may play an important role in the hydrogen‐ influenced metal fatigue.  相似文献   

2.
The effects of hydrogen charge on cyclic stress–strain properties, slip band morphology and crack behaviour of annealed medium carbon steels (JIS‐S45C) were studied. The total strain range of the stress–strain hysteresis loop in the hydrogen‐charged specimen was smaller than that in the uncharged specimen. Localized slip bands were observed in the hydrogen‐charged specimen, while the slip bands were widely and uniformly distributed in the uncharged specimen. It is presumed that the decrease in the total strain range of the hysteresis loop is due to the slip localization caused by the hydrogen charge and cyclic loading. The sites of fatigue crack initiation were mostly at grain boundaries in the uncharged specimen. The sites of crack initiation in the hydrogen‐charged specimen were not only at grain boundaries but also at slip bands inside ferrite grains. These results imply that hydrogen enhances dislocation mobility along slip bands and results in slip localization. These slip bands then attract hydrogen. This mechanism of hydrogen–slip band interaction may play an important role in the hydrogen‐influenced metal fatigue.  相似文献   

3.
The distributions of plastic strain near grain boundaries induced by fatigue loading were investigatedby the fiducial grid method in pure aluminum specimens, and the resulted grain boundary sliding(GBS) was systematically analysed. The results show that the strain field near a grain boundary isnonuniform. GBS is restricted by the junction of grain boundaries and causes discontinuities of bothdisplacement and strain. A peak value of shear strain was created in short-range area across the grainboundary. GBS plays an important role in cyclic softening and secondary hardening. The control fac-tor of GBS is the relative orientation between two grains and the macro orientation of the grainboundary rather than the ∑ value of the boundary.  相似文献   

4.
Crystal plasticity has been applied to model the cyclic constitutive behaviour of a polycrystalline nickel-based superalloy at elevated temperature using finite element analyses. A representative volume element, consisting of randomly oriented grains, was considered for the finite element analyses under periodic boundary constraints. Strain-controlled cyclic test data at 650 °C were used to determine the model parameters from a fitting process, where three loading rates were considered. Model simulations are in good agreement with the experimental results for stress–strain loops, cyclic hardening behaviour and stress relaxation behaviour. Stress and strain distributions within the representative volume element are of heterogeneous nature due to the orientation mismatch between neighbouring grains. Stress concentrations tend to occur within “hard” grains while strain concentrations tend to locate within “soft” grains, depending on the orientation of grains with respect to the loading direction. The model was further applied to study the near-tip deformation of a transgranular crack in a compact tension specimen using a submodelling technique. Grain microstructure is shown to have an influence on the von Mises stress distribution near the crack tip, and the gain texture heterogeneity disturbs the well-known butterfly shape obtained from the viscoplasticity analysis at continuum level. The stress–strain response near the crack tip, as well as the accumulated shear deformation along slip system, is influenced by the orientation of the grain at the crack tip, which might dictate the subsequent crack growth through grains. Individual slip systems near the crack tip tend to have different amounts of accumulated shear deformation, which was utilised as a criterion to predict the crack growth path.  相似文献   

5.
The slip band at the tip of a small fatigue crack interacting with grain boundaries is modelled for four cases: a slip band not reaching the grain boundary, a slip band blocked by the grain boundary, a slip band propagated into an adjacent grain, and a slip band propagated through one and then blocked by a second grain boundary. The theory for continuously distributed dislocations is used to calculate the crack-tip sliding or opening displacement and the microscopic stress intensity factor under tensile and shear loading. Assuming that the range of the tip displacement directly determines the propagation rate of both Stage I and II cracks, prediction of the propagation behavior of a small crack is made as a function of the distance between the crack tip and the grain boundary, and of the difficulty to propagate slip into adjacent grains, as well as a function of crack length and stress level. The directions for further development of modelling are discussed.  相似文献   

6.
The effects of grain boundary- and triple junction-character on intergranular fatigue crack nucleation were studied in coarse-grained polycrystalline aluminum specimens whose grain boundary microstructures were analyzed by SEM-EBSD/OIM technique. Fatigue crack nucleation occurred mainly along grain boundaries and depended strongly on both the grain boundary character and grain boundary configuration with respect to the persistent slip bands. However, it was little dependent on the geometrical arrangements between the grain boundary plane and the stress axis. Particularly, random boundaries become preferential sites for fatigue crack nucleation. The fatigue cracks were also observed at CSL boundaries when the grain-boundary trace on the specimen surface was parallel to persistent slip bands. On the other hand, no intergranular fatigue cracks were observed at low-angle boundaries. The fatigue cracks were observed at triple junctions as well as grain boundaries. Their nucleation considerably occurred at triple junctions where random boundaries were interconnected. The grain boundary engineering for improvement in fatigue property was discussed on the basis of the results of the structure-dependent intergranular and triple junction fatigue crack nucleation.  相似文献   

7.
驻留滑移带与晶界和孪晶界的交互作用   总被引:2,自引:0,他引:2  
对含有退火孪晶的多晶铜进行了不同塑性应变幅下的应变疲劳实验,利用扫描电镜及其电子通道衬度技术(SEM-ECC)观察了表面滑移形貌、疲劳裂纹和位错组态,研究了驻留滑移带与晶界和孪晶界的交互作用.结果表明,在晶界附近和远离晶界处观察到位错组态分布的不均匀现象.这种不均匀性导致多晶铜中疲劳裂纹首先沿着普通大角晶界开裂,在孪晶界处由于应变相容性较好而难以产生疲劳裂纹.  相似文献   

8.
Fatigue experiments were conducted on polycrystalline nickel of two grain sizes, 24 and 290 μm, to evaluate the effects of grain size on cyclic plasticity and fatigue crack initiation. Specimens were cycled at room temperature at plastic strain amplitudes ranging from 2.5×10−5 to 2.5×10−3. Analyses of the cyclic stress–strain response and evolution of hysteresis loop shape indicate that the back stress component of the cyclic stress is significantly affected by grain size and plastic strain amplitude, whereas these parameters have little effect on friction stress. A nonlinear kinematic hardening framework was used to study the evolution of back stress parameters with cumulative plastic strain. These are related to substructural evolution features. In particular, long range back stress components are related to persistent slip bands. The difference in cyclic plasticity behavior between the two grain sizes is related to the effect of grain size on persistent slip band (PSB) morphology, and the effect this has on long range back stress. Fine grain specimens had a much longer fatigue life, especially at low plastic strain amplitude, as a result of the influence of grain size on fatigue crack initiation characteristics. At low plastic strain amplitude (2.5×10−4), coarse grain specimens initiated cracks where PSBs impinged on grain boundaries. Fine grain specimens formed cracks along PSBs. At high plastic strain amplitude (2.5×10−3), both grain sizes initiated cracks at grain boundaries.  相似文献   

9.
《Scripta Metallurgica》1989,23(4):513-518
The fatigue tests in air show that persistent slip bands (PSB's) and cracks nucleate very early at special grain boundaries. At stress amplitudes for which no persistent slip band nucleation was observed in single crystals and which were oriented for single slip, cracks still nucleate at grain boundaries. The endurance limit for special bicrystals lay 50% below the endurance limit of polycrystals. In air, the cracks nucleate at the boundary but propagate within the PSB. From the stress amplitudes at which PSB's nucleate in single crystals and in bicrystals, which have one grain with the same orientation as the single crystals, the additional shear stress due to elastic anisotropy was measured to be 55 MPa. These tests yield an understanding of the behavior of short cracks, which nucleate at special boundaries but cannot propagate further, if they hit an unfavorably oriented boundary for which higher local stresses for propagation were needed.With the same bicrystals, corrosion fatigue tests were carried out in ammonium carbonate solutions. In the solution, crack nucleation was found to depend on frequency and amplitude. Contrary to the behavior in air, the cracks nucleate at and propagate along the grain boundary. Specimens which last for 105 cycles in air only survive 6·103 cycles at the lowest frequencies tested. In addition, if the stress amplitude is reduced by 27%, it was observed that, for a given frequency, the fatigue life is reduced by more than 90% relative to the fatigue life in air at the same stress level. The susceptibility of special boundaries against corrosion fatigue combined with the observed dependencies on stress amplitude and frequency could be understood on the basis of the slip step dissolution model for SCC.  相似文献   

10.
State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal Research, Chinese Academy of Sciences,Shenyang, 110015, China)Abstract:The cyclic saturation dislocation patterns within grains and in the vicinity of low-angle grain boundaries in fatigued copper crystal were successfully observed by electron channeling contrast technique in SEM. The results show that the dislocation patterns within grains consisted of typical two-phase structure, i.e. persistent slip bands (PSB) and veins. With increasing plastic strain amplitude (γp1 ≥1.7×10-3), large amount of PSBs and regufar dislocation walls were observed.The dislocation walls and PSBs could cross through the low-angle grain boundaries continuously except that the dislocation-free zone (DFZs) appeared at some local regions. Combining with the cyclic stress-strain response and dislocation patterns, the effect of low-angle grain boundaries on cyclic deformation behavior was discussed.  相似文献   

11.
In low strain fatigue, cracks often form in persistent slip bands (PSB) in a wide variety of materials. Observations of crack nucleation involving PSB have been made in copper single crystals by careful interferometric studies. The width, length, step height and thus strain localization in the PSBs remain very stable during saturation, even up to three-quarters of the life. For a given applied strain amplitude, the specimen will form PSBs having a certain distribution of slip offsets. The fatal crack is found to nucleate in the group of micro-PSBs having the largest offsets, and the largest strain localization. The PSB volume fraction for a given strain amplitude depends only very slightly on crystal orientation, and the slip offsets not at all. Thus the kinetics of crack nucleation are not affected by orientation. The mechanism of nucleation is concluded to be one of random walk in the slip offsets of PSBs.  相似文献   

12.
Armco iron specimens with notches were cyclic loaded at stress amplitudes that produced fatigue lives greater than 4 × 107 cycles at temperatures of 23, 60 and 100°C and a frequency of 23 kHz. Simultaneously crack initiation and propagation as well as slip bands formation were observed by optical microscopy. The main fatigue cracks initiates crystallographically from a surface layer at the grain boundaries and in regions with a low density of slip bands or non-crystallographically in regions without slip bands. The crack path is surrounded by a thin plastic region formed by slip bands which tend to be in a shear direction or may be in other directions. The thickness of the plastic region and orientation of cracks nuclei are a function of both the grain orientation and temperature during loading. The ultrasonic plastic deformation at higher temperature is found in greater number of grains in contrast to observations at room temperature. At higher temperatures the concentration of external stress in the notch root is less significant than that room temperature also at high frequency loading.  相似文献   

13.
Microstructure irreversibility plays a major role in the gigacycle fatigue crack initiation. Surface Persistent Slip Bands (PSB) formation on Copper and its alloy was well studied by Mughrabi et al. as typical fatigue crack nucleation in the very high cycle fatigue regime. In the present paper, Armco iron sheet specimens (1 mm thickness) were tested under ultrasonic frequency fatigue loading in tension–compression (R = −1). The test on the thin sheets has required a new design of specimen and new attachment of specimen. After gigacycle fatigue testing, the surface appearance was observed by optical and Scanning Electron Microscope (SEM). Below about 88 MPa stress, there is no PSBs even after fatigue cycle up to 5 × 109. With a sufficient stress (above 88 MPa), PSBs in the ferrite grain was observed by optic microscope after 108 cycles loading. Investigation with the SEM shows that the PSB can appear in the body-centered cubic crystal in the gigacycle fatigue regime. Because of the grain boundary, however, the local PSB did not continually progress to the grain beside even after 109 cycles when the stress remained at the low level.  相似文献   

14.
建立了镍基单晶切口试样的三维晶体弹塑性有限元模型,研究了不同尺寸的"U"型和"V"型切口试样的应力分布和滑移系开动特性,给出了八面体分切应力沿切口截面径向和周向的分布情况.结果表明切口尺寸对分切应力有显著影响:对于这两种类型切口,随着切口半径的减小,最大分切应力增加,并且切口半径越小,分切应力沿切口截面周向波动的幅度越大;相应的开动滑移系也不同.  相似文献   

15.
Hardened surface layers such as those produced by ion implantation can inhibit the emergence of persistent slip bands (PSBs) at the free surface during low cycle fatigue, thereby extending crack initiation life. They have little effect, however, on bulk PSB formation. PSBs nucleated in the interior eventually impinge on the underside of the surface layer, producing localized cyclic shear strains in the film which lead to film rupture and rapid crack initiation. As a result, increases in fatigue life are modest. The present finite element model analysis shows that PSBs carrying plastic strains characteristic of fatigued f.c.c. metals produce stresses in an elastic surface layer which may exceed 1% of the surface film shear modulus. The detailed results are consistent with phenomenological data on surface damage accumulation during low cycle fatigue of ion-beam-modified nickel. Implications for the design of surface microalloys for inhibition of fatigue crack initiation are discussed.  相似文献   

16.
This research reveals the critical role of basal slip in the substructure development during friction stir processing of a magnesium alloy. In this respect, the intragranular lattice rotation axes are considered to identify the activity of different slip systems. The applied shear strain during the procedure is stored in the matrix through slip-induced rotations at the grain level. The rotations around distinct Taylor axes produce “slip domains” separated by necessary boundaries from the parent grains, significantly contributing in grain refinement. The basal slip is easily activated in grains holding different stored energy; however, the nonbasal slip has a higher dependency on the amount of local applied strain. Determining the contribution of different slip systems in strain accommodation reveals that the basal slip imposes the highest fraction of low-angle boundaries into the microstructure leading to the development of the ultimate grain boundary structure.  相似文献   

17.
周辉  王培  陆善平 《材料研究学报》2019,33(11):801-808
采用晶体塑性有限元方法研究了NiCrFe焊缝金属中晶界形貌和晶界MC碳化物对局部变形行为的影响。结果表明,试样中的弯曲晶界促进其周围基体中滑移系的开动,进而促进塑性变形均匀分布。由于晶界碳化物MC与基体的临界分剪切应力和硬化行为的差异显著,碳化物承担较高的应力而发生较小的塑性变形。碳化物与基体界面处不连续的应力分布加剧了二者变形的不协调性,使裂纹在MC与基体界面处萌生。焊缝金属中的弯曲晶界和晶界碳化物MC,对高温失塑裂纹的作用相反。为了降低高温失塑的影响,在工程实践中应该在尽量减少MC的情况下得到弯曲晶界。  相似文献   

18.
The stress characteristics in the anisotropic bicrystal and tricrystal specimens were analyzed using the anisotropic elastic model, orthotropic Hill‘s model and rate-dependent crystallographic model. The finite element analysis results show that non-uniform stresses are induced by the grain boundary. For bicrystal specimens in different crystallographic orientations, there exist stress concentrations and high stress gradients nearby the boundaries. The activation and slipping of the slip systems are dependent on the crystallographic orientations of the grains and also on the relative crystallographic orientations of the two adjoining grains. For the tricrystal specimens, there is not always any stress concentrations in the triple junction, and the concentration degree depends on the relative crystallographic orientations of the three grains. Different from the bicrystal specimens, there may be or no stress concentration in the vicinity of grain boundaries for the tricrystal specimens, which depends on the relative crystallographic orientations of the three grains. The stress concentration near to the grain boundaries and triple junction can be high enough for the local plastic deformation, damage and voiding or cracking even when the whole specimen is still under the elastic state.It can be further concluded that homogeneous assumption for polycrystalline materials is not suitable to study the detailed meso- or micro-mechanisms for damaging and fracturing.  相似文献   

19.
By comparison of the observed trace angles of active slip planes with the expected traces in plastically deformed metal polycrystals, conclusions for the local stress state within the grains of polycrystalline aggregates can be drawn. The expected slip systems can be calculated when the local stress tensor and the orientation of the crystallites in the specimen space are known. In fatigued nickel polycrystals, the crystal orientation was determined by the EBSD (electron backscattering diffraction) method in the scanning electron microscope. It was shown that at the relatively small plastic strains under fatigue conditions the crystalline interactions do not essentially influence the local stress state in the grains, but the external uniaxial stress tensor remains valid in good approximation.  相似文献   

20.
This paper describes an enhanced physics‐inspired model to predict the life of the second‐generation single crystal superalloy PWA 1484 experiencing out‐of‐phase (OP) thermomechanical fatigue (TMF). Degradation due to either pure fatigue or a coupling between fatigue and environmental attack are the primary concerns under this loading. The life model incorporates the effects of material anisotropy by utilizing the inelastic shear strain on the slip system having the highest Schmid factor while accounting for the effects of temperature‐dependent slip spacing and stress‐assisted γ′ depletion. Both conventional TMF and special bithermal fatigue (BiF) experiments were conducted to isolate and therefore better understand the interactions between these degradation mechanisms. The influences of crystallographic orientation, applied mechanical strain range, cycle maximum temperature and high temperature hold times were assessed. The resulting physics‐inspired life estimation model for OP TMF and OP BiF predicts the number of cycles to crack initiation as a function of crystal orientation, applied strain amplitude and stresses, temperature, cycle time (including dwells), and surface roughness within a factor of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号