首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary Al–13.8at%Cu–1.6at%Fe alloy was prepared from Al–Cu and Al–Fe alloys at 1000 °C. The ternary Al–Cu–Fe alloy was centrifugally cast to fabricate a new type of functionally graded material (FGM) by a centrifugal in situ method. The structure is expected to differ from that of binary alloys. It was found that the fabricated FGM rings consist of four different phases, namely, Al, Al2Cu, Al7Cu2Fe(ω) and Al13Fe4 phases. The shape of ω phase was fiber (needle) judging from the observation by a scanning acoustic microscope (SAM). The position dependence of the microstructure was examined on the fabricated FGM rings, and the volume fraction of ω phase was found to increase toward the outer region of the ring. Moreover, orientation and aspect ratio of the ω phase varied in the rings in a gradually graded manner. Therefore, the present study explores a method to produce fiber-dispersed FGMs by applying a centrifugal in situ method to ternary alloys.  相似文献   

2.
The age-hardening kinetics of powder metallurgy processed Al–Cu–Mg alloy and composites with 5, 15 or 25 vol.% SiC reinforcements, subjected to solution treatment at 495 °C for 0.5 h or at 504 °C for 4 h followed by aging at 191 °C, have been studied. The Al–SiC interfaces in composites show undissolved, coarse intermetallic precipitates rich in Cu, Fe, and Mg, with its extent varying with processing conditions. Examination of aging kinetics indicates that the peak-age hardness values are higher, and the time taken for peak aging is an hour longer on solutionizing at 504 °C for 4 h, due to greater solute dissolution. Contrary to the accepted view, the composites have taken longer time to peak-age than the alloy, probably due to lower vacancy concentration, large-scale interfacial segregation of alloying elements, and inadequate density of dislocations in matrix. The composite with 5 vol.% SiC with the lowest inter-particle spacing has shown the highest hardness.  相似文献   

3.
The purpose of this work is to study the microstructural mechanisms associated with the eutectoid transition in a ternary Cu–12 wt.% Al–3 wt.% Ni alloy. The samples have been initially annealed at 850 °C, then slowly cooled down to room temperature. The experiments have been carried out both on cooling and on heating above 500 °C using isothermal mechanical spectroscopy and X-ray diffraction (fitted with a temperature camera). On heating, a relaxation peak with a high intensity rises up above 600 °C, then on cooling, the peak totally disappears below 580 °C, the effect being reproducible. The structural analysis, undertaken in the same temperature domain, has clearly evidenced each step of the evolution, particularly the eutectoid transformation. Consequently, the damping effect seems to be associated to the presence of the high temperature β phase.  相似文献   

4.
The damping properties of Zn–22 wt.% Al alloys without and with Sc (0.55 wt.%) and Zr (0.26 wt.%) were investigated. The internal friction of the determined by the microstructure has been measured in terms of logarithmic decrement (δ) using a low frequency inverted torsion pendulum over the temperature region of 10–230 °C. An internal friction peak was separately observed at about 218 °C in the Zn–Al alloy and at about 195 °C in Zn–Al–Sc–Zr alloy. The shift of the δ peak was found to be directly attributed to the precipitation of Al3(Sc, Zr) phases from the alloy matrix. We consider that the both internal friction peak in the alloy originates from grain boundary (GB) relaxation, but the grain boundary relaxation can also be affected by Al–Sc–Zr intermetallics at the grain boundaries, which will impede grain boundary sliding. In addition, Al–Sc–Zr intermetallics at the grain boundaries can pin grain boundaries, and inhibit the growth of grains in aging, which increases the damping stability of Zn–22 wt.% Al alloy.  相似文献   

5.
When elemental Ti and B powders were added to molten Al at above 1000°C, fine in situ TiB2 particulates were formed through Al–Ti–B exothermic reaction. By optimising the nucleation of TiB2, the tensile and yield strengths of a synthesised Al–15Vf%TiBs composite were twice that of matrix material. Modification of Al-matrix with 4.5 wt%Cu tripled the tensile and yield strengths at peak-aged condition. Owing to the co-presence of brittle Al3Ti flakes with TiB2 particles in the composites synthesised by the Al–Ti–B system, ductility was reduced to 68% and 84% in composites with Al- and Al–Cu matrices, respectively. When the (Ti + B) mixture was incorporated with 3 wt%C, TiB2 and TiC reinforcing phases were simultaneously produced in the composite with Al–Cu matrix. Such an approach reduced Al3Ti compound in the composite considerably. Although the presence of Cu in the composite was found to promote the formation of Al3Ti, its effect on the fluidity caused the melt recovery to increase from 33% to 52%.  相似文献   

6.
The microstructure and composition of binary and ternary intermetallics have been studied in ternary diffusion couples of Cr and an Al–Si eutectic alloy. The ternary intermetallic always formed in the liquid part of the diffusion couple as a dendritic structure. Two intermetallics compounds, CrSi2 and Cr5Si3, of the Cr–Si binary system have been observed. The CrSi2 intermetallic has a high solubility of up to 20 at.% Al and forms as faceted plates. A number of intermetallics, namely, CrAl7, Cr2Al11, CrAl4, Cr4Al9, Cr5Al8 and Cr2Al, of the Cr–Al system have been observed. The solubility of Si varies from as low as 0.8 at.% in Cr2Al to as high as 9 at.% in Cr4Al9. A schematic of the reaction scheme of the Cr–Al–Si system is presented. This has been based on the observed microstructure and composition of phases.  相似文献   

7.
Films of La2Zr2O7 (=LZO) have been formed by chemical solution deposition technique (CSD) on new bi-axially textured Cu–Ni alloy tapes based on rolled constantan (Cu55Ni45) Rabits. The precursor used was acetylacetonates treated in propionic acid (0.1–0.87 mol/l) and then deposited by spin-coating. The LZO film starts to crystallize above 850 °C, the film nucleates bi-axially textured on the substrate (with unit cell axis rotated 45° from those of the substrate). The top part of the film is not textured even after long annealing time at 1100 °C, but the interfacial part is bi-axially textured. Thus, synthesis of bi-axially textured films on Cu55Ni45 Rabits seems possible but more works are needed to optimize its properties.  相似文献   

8.
The influence of the plasma-sprayed coatings and of the atmosphere on creep of the Ti–6Al–4V alloy was investigated. Yttria partially stabilized zirconia (YSZ) with CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti–6Al–4V substrates. Constant load creep tests were conducted on a standard creep machine in air and nitrogen atmospheres on uncoated samples and in air on coated samples, at stress levels of 520 MPa at 500 °C, 319 MPa at 600 °C and 56 MPa at 700 °C. Results indicated that the creep rates in nitrogen and of the coated alloy were lower than those of the uncoated in air.  相似文献   

9.
The effect of the addition of Al–5Ti–1B (wt.%) chemical grain refiners on the nuclei generation for a range of superheats during pouring in new rheocasting (NRC) of aluminium alloy Al–7Si–0.4Mg (wt.%) has been investigated. The contributions to the grain density by the grain refiner additions and impurity particles were quantified and it was found that the addition of grain refiner provides increasing number of nucleation sites as the superheat is decreased from 105 to 35 °C. However, at superheats of 15 °C, which are more typical of NRC, the grain density is similar in the alloy both with and without grain refiner additions. At this superheat, the equiaxed grain morphology is globular rather than dendritic and it is postulated that the grain size is dependant upon grain coarsening mechanisms rather than the number of heterogeneous nucleation events. In agreement with previous studies on semi-solid processing, it was found that the achievement of a fine globular grain structure led to a more homogeneous casting being produced. The mechanism of the macrosegregation observed in these castings is discussed and explained by the ‘sponge effect’.  相似文献   

10.
Ti–6Al–4V (Ti64) sheet specimens were cathodically hydrogenated in sulfuric acid solution at ambient conditions. The hydrogenated specimens were then sent to go through the designed thermohydrogen processing (THP) twice to obtain a nano-sized grain structure. The average grain size of resulted microstructure was found to be 10–20 nm obtained by TEM. Qualitative and quantitative analyses performed by employing X-ray diffractometry (XRD) and elemental analysis (EA) showed that the addition of As2O3 as hydrogenation promoter in electrolyte significantly increased the hydrogen uptake. The high concentration of hydrogen arising from promoter action is the key factor in grain refinement. The optimal processing parameter found for grain-refining Ti64 was: (1) electrolytic hydrogenation at 100 mA cm−2 for 3 h in 1 N H2SO4(aq) by adding 0.1 g L−1 As2O3; (2) β transformation carried out at 850 °C for 1 h in air furnace, followed by a furnace cooling to 590 °C and held for 6 h; (3) oxide film removed and then dehydrogenated at 650 °C and 1.0 × 10−6 Torr for 10 h; (4) repeated the same processes once more.  相似文献   

11.
We have investigated the annealing effect of magnetic tunnel junctions (MTJs) with or without nano-oxide layer (NOL). For MTJ without NOL, TMR ratio increased up to 300 °C and the highest value was 21.6%. On the other hand, TMR ratio of MTJ with NOL increased up to 400 °C and the highest value was 22.7%. As shown in the auger electron spectroscopy (AES) and transmission electron microscopy (TEM) results, this improved thermal stability is due to NOL in the pinned layer. Mn diffusion into Al–O barrier is blocked and interface of Al–O is smothered by NOL. These may be the main reasons of high thermal stability of MTJ with NOL.  相似文献   

12.
Considerable changes in atomic distribution, Ni atomic ordering and elimination of inhomogeneity in distribution of carbon atoms in the -martensite occurred after high-dose electronic irradiation and subsequent deep cooling of parent Fe–22.4 at.%Ni–5.13 at.%C austenite in liquid nitrogen. These atomistic changes resulted from the electronic irradiation caused a huge increase of the 160 °C peak of internal friction in the -martensite. Discussion regarding this phenomenon brings to a conclusion on the behavior of the 160 °C peak, fitting in the best way for a certain Snoek-like relaxation in Fe–Ni–C martensite.  相似文献   

13.
The electrochemical corrosion behavior of Ti–6Al–4V implant alloy was investigated in three biological solutions, i.e. urine, serum and joint fluid. The corrosion properties of Ti–6Al–4V implant alloys were examined by using electrochemical techniques, such as the potentiodynamic method, cyclic voltammetry, electrochemical impedance spectroscopy (EIS). The electrochemical corrosion characteristics of Ti–6Al–4V implant alloys in three biological solutions were measured in terms of the corrosion potential (Ecorr), the corrosion current density (icorr), and ac polarization resistance (Rp). The corrosion kinetic parameters were calculated from both the Tafel plot analyses and EIS analyses. The dependence of impedance versus potentials was studied at 37 °C at various offset potentials in three biological solutions. The ac circuit model for Ti–6Al–4V implant alloy at corrosion interface in biological solution was proposed, which was based on a simple Randles equivalent circuit. It was found that the Ti–6Al–4V implant alloy in three biological solutions showed a characteristic of a capacitive behavior. The experimental results of Tafel plot analyses were found in good agreement with that of EIS analyses.  相似文献   

14.
The internal friction and modulus of a nanograined bulk Fe–25 at.% Ni prepared by an inert gas condensation and in situ warm consolidation technique were measured in temperature range −100 to 400 °C by means of a dynamic mechanical analyzer (DMA). An internal friction peak at around −75 °C associated with martensitic transformation was observed. During heating, an internal friction peak at about 200 °C accompanied with the decrease of modulus was also observed, which was proved by XRD that this may mainly be attributed to the reverse phase transformation of stress-induced martensite (SIM). Some abnormal features of modulus versus temperature were observed and discussed.  相似文献   

15.
Zirconia ceramics, mainly of cubic phase, are used in different applications because of their particular electrical and structural properties.

After the forming stage, sintering leads to a material with suitable microstructural characteristics. The sintering process mainly depends on thermal cycle and on starting particle size and its distribution; it also depends on density and the microstructure of green material. Cubic zirconia has a high (2680 °C) melting temperature; however, effective sintering could be observed for temperatures higher than 900 °C (nanoparticles), and it may reach a final density of 96–98% the theoretical value at relative low temperatures.

The objective of this paper is to study the sintering kinetics of stabilized zirconia in its cubic phase with 8% molar of Y2O3 under fast firing rates up to nearly isothermal conditions. Samples were shaped from suspensions dispersed with ammonium polyacrylate by slip casting. Sintering was performed in the temperature range between 1200 °C and 1400 °C. The sintering kinetic process was followed by measuring density as a function of time. A sintering model was applied to fit the experimental data of the first steps of densification. It was observed that sintering obeys the same mechanism in the temperature and time ranges under study, which results in an activation energy of 170 kJ mol−1. Sintering is controlled by Zr cation diffusion, for which a lattice diffusion coefficient of Dl = 8 × 10−12 cm2 s−1 at 1400 °C was found, and the activation energy of the diffusion process was 223 kJ mol−1.  相似文献   


16.
The present study investigated the effect of mischmetal as a modifier, as well as the effects of cooling rate and heat treatment on the hardness of non-modified and Sr-modified A319.1, A356.2 and A413.1 Al–Si casting alloys. The main aim of the study was to determine the effect of mischmetal in terms of mischmetal-containing intermetallic phases, as well as the effects of the chemical composition of the alloys, cooling rate and heat treatment on the corresponding hardness values obtained for the alloys in question. Two cooling rates were employed to provide estimated hardness levels of 85 and 110–115 BHN, levels conforming to levels most commonly observed in commercial applications of these alloys.

The hardness measurements revealed that the hardness values of the as-cast alloys were higher at high cooling rates than at low cooling rates. Non-modified alloys (i.e. those with no Sr addition) displayed slightly higher hardness levels compared to the Sr-modified alloys. Also, the hardness decreased with the addition of mischmetal at both cooling rates.

Two peak hardness values were observed at 200 °C/5 h and 240 °C/5 h at high cooling rates in the non-modified A319.1 alloy after aging at different temperatures between 155 °C/5 h and 240 °C/5 h, while the Sr-modified alloy showed only one peak at 200 °C/5 h. Two maximum hardness values were observed at 155 °C/5 h and 180 °C/5 h in both non-modified and Sr-modified alloys at low cooling rates. The alloys containing 0 and 2 wt% mischmetal additions exhibited the highest hardness values at both cooling rates; the hardness decreased with further mischmetal additions.

Peak hardness was observed at 180 °C/5 h in the non-modified and Sr-modified A356.2 alloys under both cooling rate conditions after aging at different temperatures between 155 °C/5 h and 240 °C/5 h. The alloys free of mischmetal exhibited relatively higher levels of hardness than those containing mischmetal. The hardness decreased with increasing mischmetal addition. At the high cooling rates, the non-modified alloys displayed higher hardness values than the Sr-modified alloys, while an opposite trend was observed at the low cooling rate.

The decrease in the hardness values may be attributed to the interaction of the mischmetal with the alloying elements Cu and Mg to form the various intermetallic phases observed. In tying up these elements, the volume fraction of the precipitation-hardening phases formed in the A319.1 and A356.2 alloys (i.e. the Al2Cu and Mg2Si phases) is significantly reduced, thereby decreasing the hardness. The addition of mischmetal was also reported to change the precipitation sequence of the Mg2Si phase in the A356.2 alloy. In the case of the A413.1 alloy, the low content of alloying elements resulted in a weak response of the alloy to the age-hardening process at all aging temperature/time conditions (155 °C/5 h–240 °C/5 h), and at both cooling rates. Thus, no peak hardness was observable in these alloys.  相似文献   


17.
Hydroxyapatite (HA) has been synthesised in presence of 10–30 wt.% of m-ZrO2 by solid state reaction between tricalcium phosphate (TCP) and Ca(OH)2 at 1000 °C for 8 h. The m-ZrO2 was partly converted into t-ZrO2 by partial consumption of CaO which in turn resulted in a mixture of β-TCP and HA. On sintering these HA–β-TCP–ZrO2 composite powders at 1100–1400 °C for 2 h, the HA is further decomposed into β-TCP and CaO. The CaO so produced reacts further with m-ZrO2/t-ZrO2 generating a mixture of t-ZrO2 and CaZrO3 in different proportions. These various phases formed interfere with the sinterability of the composites due to their differential shrinkages leading to a overall reduced density as compared to that of pure HA. The composites show a T-onset of decomposition at around 1150 °C and a 40% HA yield was obtained at the highest sintering temperature of 1400 °C. The products were subjected to XRD for phase analysis and the microstructural features were studied by SEM.  相似文献   

18.
Wetting behavior and the interface reaction in the Y2O3/(Cu–Al) system were investigated at 1423 K. A contact angle of about 130° was measured in the Y2O3/Cu system. Aluminum addition to copper improves wetting and the transition from non-wetting to wetting (θ ≤ 90°) was observed for the alloy with 50 at.% Al. The microstructure examination of the interface indicates that Al reacts with yttria, yttrium dissolves in the melt and a crater of AlYO3 is formed at the substrate. The interface interaction in the Y2O3/(Cu–Al) system is in a good agreement with the results of a thermodynamic analysis in the Y–Al–Cu–O system. The crater depth and the macroscopic final contact angles are correlated with the Y and Al activities in the melt.  相似文献   

19.
The effects of re-shot-peening treatment on fretting fatigue life/strength and the recovery of residual stress of the initially shot-peened Ti–6Al–4V were investigated at room and elevated temperatures. After subjecting to fretting fatigue up to about 40% of the total expected life of the initially shot-peened Ti–6Al–4V or to thermal exposure to 370 °C only, residual stress relaxed in the range of 20–50% of its value before fretting fatigue. The magnitude of stress relaxation depended upon the applied load level and test temperature. Re-shot-peening successfully recovered the relaxed residual stress up to the same level as obtained after the initial shot-peening. Further, fretting fatigue life after re-shot-peening, excluding pre-re-shot-peening fatigue life, was very close to that of the initially shot-peened specimen at a given stress level and test temperature. It thus appears that re-shot-peening nullified the effect of fretting fatigue damage after the initial shot-peening.  相似文献   

20.
The high-temperature oxidation of Ni–16 at.% W coating electroplated on the steel substrate was studied at 700 and 800 °C in air. Before oxidation, the coating consisted of supersaturated, nanocrystalline Ni grains. During oxidation, oxygen diffused inward, Ni and the substrate elements such as Fe and Cr diffused outward. The outer NiO layer was not pure but had some dissolved ions of W6+ and Fe3+. Some Fe3+ ions were dissolved in the inner (NiO+NiWO4) mixed layer, below which (W, Fe)-supersaturated, unoxidized Ni grains existed. Below these grains, tiny Ni–W–Fe precipitates, which were formed by the outward diffusion of Fe from the substrate, were surrounded by unoxidized (Fe-enriched, Cr-containing) Ni grains. Detailed oxidation mechanism of Ni–16 at.% W coating is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号