首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
给出一种温和条件下构筑Fe3O4/Au,Fe3O4/Au@SiO2复合纳米结构材料的方法,并研究所得产物的光学、磁学性质。首先,用3-氨丙基三甲氧基硅烷(APS)对平均粒径300 nm的Fe3O4微球进行表面修饰使得其拥有大量的氨基官能团(-NH2),利用这些官能团末端的孤对电子可以共价吸附Au纳米粒子的特性,在一定条件下制备出Fe3O4/Au复合纳米结构材料,不经过任何表面处理利用St?ber方法在室温条件下对其进行SiO2包覆,得到Fe3O4/Au@SiO2复合材料。借助场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)对产物的形貌和结构进行表征,并利用紫外-可见(Uv-Vis)分光光度计和超导量子干涉仪(SQUID)对产物的光学和磁学性质进行分析。结果表明,由于所含金浓度太低,Fe3O4/Au复合材料并没有显示金纳米粒子的特征表面等离子体共振吸收峰;Fe3O4/Au,Fe3O4/Au@SiO2复合纳米结构均显示出超顺磁性和高的饱和磁化率。  相似文献   

2.
针对单独的超级电容器材料,每一种材料都有其自身独特的优点和缺陷的问题,本文通过简便的水热方法合成了多壁碳纳米管与Fe_3O_4纳米粒子的复合物。复合物表现为Fe_3O_4纳米粒子吸附在碳纳米管管壁上组成的网状结构形貌。两种组分协同作用,为这种二元纳米复合物提供了较大的比容量、优异的倍率特性和较好的循环稳定性。实验所得出的结果证明了碳材料CNT对赝电容电极材料电化学性能的改良作用,并且CNT/Fe_3O_4纳米复合物适用于超级电容器电极材料。  相似文献   

3.
通过溶剂热法合成了较大粒径的磁性Fe3O4纳米粒子,使用3-氨丙基三乙氧基硅烷(APTES)在乙醇/异丙醇体系中将其表面功能化一层氨基,随后将金纳米粒子(Au NPs)自组装于Fe3O4粒子表面,得到了Fe3O4/Au NPs纳米粒子;采用透射电子显微镜(TEM)、X-射线衍射(XRD)、振动样品磁强计(VSM)和紫外-可见光吸收光谱仪(UV-Vis)对复合粒子的形态、结构及性质进行表征.结果表明:所制备的Fe3O4磁纳米粒子粒径均一,平均粒径约为250 nm,形状几乎都呈球形,磁性Fe3O4/Au NPs复合粒子包覆均匀、具有良好的的分散性和磁化率,同时兼有磁性和金纳米粒子的特性.  相似文献   

4.
表面增强拉曼散射光谱(SERS)因具有高灵敏及无损检测的特点,在化学检测领域受到广泛关注. 采用原位化学还原法,制备氧化石墨烯/金/银(GO/Au/Ag)复合材料,利用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、紫光—可见分光光度计(UV)等手段对复合材料结构进行表征,并深入研究不同Au/Ag比例对纳米复合材料形貌和SERS的影响. 以罗丹明6G (R6G)为探针分子,研究纳米复合材料的形态对表面增强拉曼散射的影响. 研究结果表明GO/Au/Ag复合材料具有良好的SERS增强效果,且SERS信号强度与样品表面形貌以及Au、Ag含量(质量分数,全文同)有关. Au/Ag纳米颗粒表面粗糙度以及Au、Ag含量的提高可以显著增加GO/Au/Ag复合材料的SERS效果.  相似文献   

5.
随着纳米科技的快速发展,表面增强拉曼散射(SERS)被赋予了新的发展动力.通过梳理表面增强拉曼散射技术特点和国内外纳米表面增强拉曼散射基底的研究进展,分析发现SERS基底存在的排列无序、重复性和均匀性差等缺点,限制了深入研究SERS增强机理及其技术的广泛应用.SERS基底直接影响其增强效应,具有SERS高增强能力、均匀性和可重复性的活性基底将得到学界的关注与发掘.  相似文献   

6.
采用化学共沉淀法和氧化沉淀法制备磁性纳米Fe3O4粒子,并用柠檬酸三钠为表面活性剂包覆制备纳米Fe3O4粒子,同时利用包覆磁性粒子制备水基纳米磁性液体。对两种方法制备的纳米Fe3O4粒子的晶体结构、微观形貌及化学共沉淀法制备的Fe3O4在包覆前后等电点的变化进行了表征。结果表明,化学共沉淀法制备的纳米Fe3O4粒子平均粒径约为20 nm且分布比较均匀,表面活性剂包覆后,等电点由原来的pH=6.70移向pH=2.35,证实了Fe3O4粒子表面被柠檬酸离子所包覆,且制得的磁性液体的稳定性比较高;而氧化沉淀法制备Fe3O4纳米粒子粒径分布是从几十纳米到上百纳米,制得的磁性液体出现很明显的团聚。  相似文献   

7.
通过第一性原理,基于密度泛函理论框架下的全势线性缀加平面波方法,分别对Fe_3O_4(001)表面两个不同的模型A模型(以四面体内的Fe为终端)和B模型(以八面体内的Fe和O为终端)进行研究,首先通过驰豫找到最优的原子位置,然后分别通过对两个不同模型态密度和能带的计算得出A模型自旋向上和自旋向下费米能级附近都有电子占据失去了半金属性,B模型费米能级附近自旋向下有电子占据,而自旋向上费米能级处有个明显的带隙,所以仍然保持半金属性,从能带中可以看出A模型半金属性的破坏是由于其表面态的影响。  相似文献   

8.
采用透射电镜、X射线衍射和傅里叶红外光谱等技术对Fe3O4/GO,Fe3O4/MWCNTs和Fe3O4纳米组分进行了表征.基于Fe3O4/GO复合纳米组分优异的催化性能,研究了催化剂投加量、过硫酸钠浓度和pH值等对其催化性能的影响.结果表明:3种纳米组分的催化性能大小依次为:Fe3O4/GOFe3O4/MWCNTsFe3O4,其中,Fe3O4/GO复合纳米组分催化过硫酸钠降解卡马西平的性能最优.Fe3O4/GO复合纳米组分的最佳投加量和过硫酸钠的最佳浓度分别为0.4g/L和1.5mmol/L.Fe3O4/GO复合纳米组分在酸性条件下表现出最佳的催化性能,随着pH值升高,催化性能降低.Fe3O4/GO复合纳米组分对3种常用氧化剂均有较好的催化效果,且催化性能大小依次为:过硫酸氢钾H2O2过硫酸钠.  相似文献   

9.
通过用柠檬酸三钠还原硝酸银的方法制得了银溶胶及用真空镀膜的方法制备出银膜作为表面增强拉曼光谱(SERS)活性基底.分别采取不同的方法对基底粒径进行了分析计算.选用六氢吡啶作为探针分子,得到了在两种基底上SERS谱,针对粒径对光谱强度的影响进行了分析.  相似文献   

10.
纳米四氧化三钴(Co3O4)催化剂对废水中有机物具有良好的催化降解活性,但纳米催化剂难从溶液中分离的缺点限制了其应用.通过将不同量的纳米Co3O4催化剂自组装在纳米四氧化三铁(Fe3O4)上,制备出了一系列不同纳米Co3O4催化剂含量的纳米Fe3O4/Co3O4,并将该系列纳米Fe3O4/Co3O4用于双氧水(H2O2)氧化降解亚甲基蓝的反应来测试其催化性能和回收再利用性能.实验结果表明,尽管纳米Co3O4催化剂的含量对于纳米Fe3O4/Co3O4的催化性能有所影响,但该系列纳米Fe3O4/Co3O4相对纯纳米Co3O4催化剂仍表现出很好的催化活性和回收再利用性.  相似文献   

11.
研究了丁醇还原法制备Fe_3O_4的设备和工艺条件,分析了丁醇还原机理,考察了脱水、还原温度对Fe_3O_4微观结构的影响。实验表明,330℃脱水和还原时,所得Fe_3O_4的比表面积最大,矫顽力最高,活性最强。  相似文献   

12.
为了提高纳米Fe_3O_4的分散性,以马来酸酐改性超支化聚合物(简称超支化物)为模板,采用原位共沉淀法制备纳米Fe_3O_4/超支化物(Fe_3O_4/HB),并将Fe_3O_4/HB应用于催化双氧水降解染料。分析了铁盐比例(nFe2+∶nFe3+)、超支化物与FeCl2质量比(mHB∶mFeCl2)、吸附配位反应时间和共沉淀反应pH值对纳米Fe_3O_4粒径的影响,并对纳米Fe_3O_4/HB催化降解性能进行了测试。结果表明:纳米Fe_3O_4/HB制备的优化条件为:nFe2+∶nFe3+为1∶1.8,mHB∶mFeCl2为7.5∶1,吸附配位反应时间4h,共沉淀反应pH值为11,所得纳米Fe_3O_4平均粒径为116.3nm。Fe_3O_4/HB在中性条件下催化双氧水降解活性KN-G 60min,其降解率可达到99.8%。相比于无超支化物为模板制备的纳米Fe_3O_4,实验所得纳米Fe_3O_4粒径小,分散性和催化降解性能明显提高。  相似文献   

13.
以铁氰化钾、三水硝酸铜为前驱体,采用共沉淀法制得中间产物,将中间产物置于马弗炉煅烧,得到CuO/Fe_3O_4磁性纳米颗粒。利用X射线衍射仪、扫描电子显微镜、X-射线光电子能谱仪对催化剂进行物相、形貌和表面元素的表征。选择罗丹明B(RhB)等多种染料为目标污染物,建立的氧化体系在10 min内可以完全降解体系中的RhB(体系条件:30℃,CuO/Fe_3O_4 0.3 g/L,PMS 0.4 mmol/L,RhB 30μmol/L,初始pH=8.0)。实验结果表明制备的CuO/Fe_3O_4可以高效地活化过一硫酸盐降解RhB。  相似文献   

14.
Fe_3O_4/GO复合材料对甲基橙的吸附性能   总被引:1,自引:0,他引:1  
采用超声沉淀法合成Fe_3O_4/GO复合材料,通过SEM、XRD、FTIR和VSM对Fe_3O_4/GO复合材料的形貌、结构和磁性进行表征,通过对甲基橙溶液的吸附实验考察p H值、吸附剂添加量、吸附时间等因素对Fe_3O_4/GO复合材料吸附效果的影响,并进行了吸附动力学和等温吸附模型拟合.结果表明:Fe_3O_4与GO成功复合,Fe_3O_4/GO复合材料具有超顺磁性,在外在磁场的作用下可实现吸附剂与吸附质的快速分离;pH3.5时,染料去除率随着pH值增大呈下降趋势;随着吸附剂添加量增大,染料去除率逐渐增大;随着吸附时间增加,染料去除率先急剧上升,然后上升幅度趋缓直至达到吸附平衡;Fe_3O_4/GO复合材料对甲基橙的吸附符合准二级动力学模型和Langmuir模型,为化学单层吸附;pH为3左右,温度为298 K时,Fe_3O_4/GO复合材料对甲基橙的最大吸附容量可达139.7 mg/g.  相似文献   

15.
以白果壳为植物模板、稀氨水为浸煮剂、硝酸铁为前驱体溶液,制备了一种多孔白果壳遗态结构Fe/C复合材料(Fe/C-G),通过XRD、 SEM、 FT-IR、 XPS和BET对其进行了表征,并考察了溶液pH、温度、时间、初始浓度、粒径等对去除Sb(Ⅲ)效果的影响,探讨了吸附机制。结果表明:Fe/C-G由α-Fe_2O_3、Fe_3O_4和C组成,同时很好地保留了白果壳的多孔结构,其比表面积和平均介孔孔径分别为46.42 m~2/g和40.2 nm;升高温度和减小吸附剂粒径有利于吸附。Fe/C-G对Sb(Ⅲ)的吸附过程符合准二级动力学模型,在初始Sb(Ⅲ)浓度为5、 10和50 mg/L时,其吸附量分别达1.23、 2.41和9.23 mg/g;用Langmuir方程能很好地描述吸附等温线,属于快速的单分子层吸附,主要发生配位交换和表面络合反应。  相似文献   

16.
制备了一种新型的 Fc_3O_4有机复合物磁流变体,研究了在外磁场作用下此磁流变体中微粒的分布及粘度变化.结果表明,此磁流变体具有较强的磁流变活性。  相似文献   

17.
利用溶胶凝胶法制备磁性Fe_3O_4/SiO_2复合粒子,并用-氨丙基三乙基硅烷(3-APTES)对复合粒子进行修饰,作为固定化漆酶的载体,研究了固定化漆酶适宜的催化条件.结果发现,固定化漆酶的最佳反应温度为30℃,p H为4.5,固定化酶的酶活为180 U/g,酶活回收率为68.45%.考察了固定化漆酶的热稳定性、p H稳定性和储存稳定性,与游离酶相比,固定化漆酶更加稳定,便于连续操作.将固定化漆酶用于去除废水中的2,4-二氯酚,反应12 h,去除率最高为68.35%,该固定化酶重复重复使用12次后,对2,4-二氯酚的去除率可保持在52.85%.  相似文献   

18.
采用共沉淀法制备核层为四氧化三铁(Fe3O4)壳层为聚乙烯亚胺(polyethyleneimine,PEI)的磁性复合纳米粒子Fe3O4-PEI.扫描电子显微镜和透射电子显微镜表征结果显示,制备的磁性复合纳米粒子Fe3O4-PEI粒径均匀,直径约为25 nm.通过振动样品磁强计比较Fe3O4-PEI和Fe3O4纳米粒子的磁滞回线,结果表明,经PEI包覆后复合纳米粒子饱和磁化值为38.2 emu/g,仍具有较好的磁性.热重分析表明,包覆在Fe3O4纳米粒子表面的PEI质量分数约为23.26%.通过静电作用,实现了Fe3O4-PEI复合纳米粒子对葡萄糖氧化酶的负载,以铂电极为基底电极,制备了Fe3O4-PEI-GOx/Pt葡萄糖传感器.在最优测试条件下,该修饰电极对葡萄糖表现出优异的电化学催化性能,具有灵敏度高、抗干扰能力强、稳定性好的特点.  相似文献   

19.
丙烯酰胺(AA)是一种能够对人体产生神经毒性、生殖发育毒性、遗传毒性以及致癌性的有害物质,并且高淀粉、高蛋白食品经高温处理后均能产生,所以建立一种快速检测AA的方法至关重要。人体中AA的代谢途径主要是与还原型谷胱甘肽(GSH)或血红蛋白(Hb)发生加成反应。GSH在空气中容易发生氧化还原反应,因此对AA的电化学检测大多采用Hb修饰的生物传感器。Fe_3O_4纳米粒子具有较好的生物相容性,能够与GSH中的—COOH基团结合,不影响GSH的氧化性能,并且能够提升GSH的电信号。制备了Nafion/GSH-Fe_3O_4/GC传感器,采用循环伏安法对实际样品中的AA进行定性定量检测。通过对试验条件的优化,确定最佳条件为p H 4.5、GSH修饰量100μg、加成反应时间60 s。在最佳条件下,对不同浓度的AA进行检测,建立标准曲线,确定线性范围为1×10-7~1×10-5 mol/L,线性方程为Y=-0.299X+2.699(R2=0.996 7),样品回收率为100.45%。该方法实现了对丙烯酰胺的快速检测,并且对GSH应用于检测AA提供了理论基础。  相似文献   

20.
大气气溶胶中含铁的矿物在铁的生物地球化学循环中起着重要作用。Fe3O4是气溶胶中一类重要的含铁矿物。采用分光光度法测定Fe3O4在草酸中的溶解特征,分析Fe3O4溶解的速率控制机理并对溶解Fe3O4进行动力学模拟。结果表明,草酸溶解铁的过程可能是受运移和表面反应综合制约的溶解动力学过程,其他动力学模拟结果表明,草酸溶解Fe3O4控制机理比较复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号