首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of growing Bacillus subtilis and Streptococcus faecalis var. liquefaciens on staphylococcal growth, thermonuclease (TNase) activity and enterotoxin A (SEA) activity was investigated in liquid media and in foods. Abundant growth of B. subtilis or S. faecalis var. liquefaciens decreased purified SEA concentrations during a 2-day incubation in brain heart infusion broth (BHI) and supernatant fluid by 89 and 67%, respectively. Both staphylococcal TNase activity and SEA concentrations decreased when S. aureus was cultivated in the presence of B. subtilis or S. faecalis var. liquefaciens. Staphylococcal TNase activity decreased by 75 and 78% in the presence of B. subtilis and S. faecalis var. liquefaciens, respectively, while SEA activity decreased by 95 and 65%, respectively, in the presence of those test strains. The results obtained with artificially contaminated sterile chicken or beef samples were similar to those obtained with BHI broth. S. aureus grew very well in heated vegetables. TNase was undetectable, although SEA could be detected. In the presence of B. subtilis or S. faecalis var. liquefaciens, SEA activity was decreased to a non-detectable concentration.  相似文献   

2.
Enterocin AS-48 is a broad-spectrum cyclic antimicrobial peptide produced by Enterococcus faecalis. In the present study, the bacteriocin was tested alone and in combination with other antimicrobials for decontamination of Bacillus inoculated on alfalfa, soybean sprouts and green asparagus. Washing with enterocin AS-48 solutions reduced viable cell counts of Bacillus cereus and Bacillus weihenstephanensis by 1.0–1.5 and by 1.5–2.38 log units right after application of treatment, respectively. In both cases, the bacteriocin was effective in reducing the remaining viable population below detection levels during further storage of the samples at 6 °C, but failed to prevent regrowth in samples stored at 15 or 22 °C. Application of washing treatments containing enterocin AS-48 in combination with several other antimicrobials and sanitizers (cinnamic and hydrocinnamic acids, carvacrol, polyphosphoric acid, peracetic acid, hexadecylpyridinium chloride and sodium hypochlorite) greatly enhanced the bactericidal effects. The combinations of AS-48 and sodium hypochlorite, peracetic acid or hexadecylpyridinium chloride provided the best results. After application of the combined treatments on alfalfa sprouts contaminated with B. cereus or with B. weihenstephanensis, viable bacilli were not detected or remained at very low concentrations in the treated samples during a 1-week storage period at 15 °C. Inhibition of B. cereus by in situ produced bacteriocin was tested by cocultivation with the AS-48 producer strain E. faecalis A-48-32 inoculated on soybean sprouts. Strain A-48-32 was able to grow and produce bacteriocin on sprouts both at 15 and 22 °C. At 15 °C, growth of B. cereus was completely inhibited in the cocultures, while a much more limited effect was observed at 22 °C. The results obtained for washing treatments are very encouraging for the application of enterocin AS-48 in the decontamination of sprouts. Application of washing treatments containing AS-48 alone can serve to reduce viable cell counts of bacilli in samples stored under refrigeration, while application of combined treatments should be recommended to avoid proliferation of the surviving bacilli under temperature-abuse conditions.  相似文献   

3.
Lactobacillus pentosus B96 is a bacteriocin-producing strain that was isolated from fermenting olive brines. The aim of the present work was the optimization of bacteriocin production, using response surface methodology (RS). A two-level screening Plackett–Burman design was used to select influencing factors. Then, a central composite design, with three repetitions in the centre, for pH, NaCl concentration, and temperature was carried out. Finally, an RS, which included the region of maximum accumulated bioactivity, was built as a function of NaCl concentration and temperature. Bioactivity accumulation was always observed during the exponential growth-phase, although no apparent correlation between maximum accumulated bioactivity and biomass formation was found. L. pentosus B96 is known to grow better at about 30 °C, neutral pH, and by the absence of NaCl; however, a suboptimal temperature (22 °C) and a moderate NaCl stress (0.65 mol l−1) stimulated bacteriocin production. The research led to environmental conditions that maximized bacteriocin activity, which can be expressed as a polynomial function of temperature and NaCl concentration. The suboptimal growth conditions, which were found to produce the highest bacteriocin titres, resembled those prevailing during green table olive fermentation. This model can be used to improve “in situ” bacteriocin production thus contributing to the microbiological control of the process.  相似文献   

4.
The thermal stability of purified recombinant Aspergillus aculeatus pectinmethylesterase (PME) in different media was studied. The influence of pH, ionic strength and additives (salts and polyols) was evaluated. At pH 5.0 and a high ionic strength (0.50 M), the enzyme showed a high thermostability (inactivation at temperatures 60 °C). Interestingly, an enhancement of its heat stability was observed at pH 7.0 and temperatures above 55 °C, this behaviour was reflected in an atypical evolution of structural changes in the overall conformation of the enzyme, according to FTIR spectroscopy results. Recombinant A. aculeatus PME thermal inactivation at pH 7.0 could be described by a fractional-conversion model. Addition of NaCl increased the thermal stability at pHs 5.0 and 7.0, while addition of CaCl2 had no influence. With regard to sugars (sucrose, trehalose, glucose and maltose) and polyols (sorbitol, lactitol and glycerol) addition, at the same concentration and pH, the polyols showed a higher protective effect than sugars. Also, the thermostability of recombinant A. aculeatus PME increased with the additive concentration, although the source of OH groups was the main parameter involved.  相似文献   

5.
K3 killer trait was introduced into the fermentation starter strain of Saccharomyces cerevisiae BSP 1 in order to construct immune industrial strain that produces K3 type killer toxin and was resistant to Candida tropicalis (K+) contamination. Protoplasts of respiration-deficient Rhoo strain of S. cerevisiae NCYC 761 (K3) and S. cerevisiae BSP 1 were fused. The resulting respiration-competent hybrid with K3 type killer activity was selected on media containing a non-fermentable carbon source and by a killer zone assay in a plate test, respectively. The fusant was similar to the parent strain in its fermentation and sugar utilization patterns, growth rate, dough-raising properties and osmotolerance. The newly constructed S. cerevisiae BSP 1 (K3) inhibited the growth of C. tropicalis in a pH range from 3.5 to 5.0 and over a temperature range of 20–30°C.  相似文献   

6.
In this study 635 lactic acid bacteria of food origin were evaluated for their potential application as protective cultures in foods. A stepwise selection method was used to obtain the most appropriate strains for application as protective cultures in chicken meat. Specifically, all strains were examined for antimicrobial activity against various Gram positive and Gram negative pathogenic and spoilage bacteria. Strains exhibiting anti-bacterial activity were subsequently examined for survival in simulated food processing and gastrointestinal tract conditions, such as high temperatures, low pH, starvation and the presence of NaCl and bile salts. Selected strains where then examined for basic safety properties such as antibiotic resistance and haemolytic potential, while their antimicrobial activity was further investigated by PCR screening for possession of known bacteriocin genes. Two chosen strains were then applied on raw chicken meat to evaluate their protective ability against two common food pathogens, Listeria monocytogenes and Salmonella enteritidis, but also to identify potential spoilage effects by the application of the protective cultures on the food matrix. Antimicrobial activity in vitro was evident against Gram positive indicators, mainly Listeria and Brochothrix spp., while no antibacterial activity was obtained against any of the Gram negative bacteria tested. The antimicrobial activity was of a proteinaceous nature while strains with anti-listerial activity were found to possess one or more bacteriocin genes, mainly enterocins. Strains generally exhibited sensitivity to pH 2.0, but good survival at 45 °C, in the presence of bile salts and NaCl as well as during starvation, while variable survival rates were obtained at 55 °C. None of the strains was found to be haemolytic while variable antibiotic resistance profiles were obtained. Finally, when the selected strains Enterococcus faecium PCD71 and Lactobacillus fermentum ACA-DC179 were applied as protective cultures in chicken meat against L. monocytogenes and S. enteritidis respectively, a significantly reduced growth of these pathogenic bacteria was observed. In addition, these two strains did not appear to have any detrimental effect on biochemical parameters related to spoilage of the chicken meat.  相似文献   

7.
Data on the ability of chemical poultry decontaminants to induce an acid stress response in pathogenic bacteria are lacking. This study was undertaken in order to compare the survival rates in acid broths of Listeria monocytogenes and Salmonella enterica strains, both exposed to and not exposed to decontaminants. The contribution of the glutamate decarboxylase (GAD) acid resistance system to the survival of bacteria in acid media was also examined. Four strains (L. monocytogenes serovar 1/2, L. monocytogenes serovar 4b, S. enterica serotype Typhymurium and S. enterica serotype Enteritidis) were tested before (control) and after exposure to trisodium phosphate, acidified sodium chlorite, citric acid, chlorine dioxide and peroxyacids (strains were repeatedly passed through media containing increasing concentrations of a compound). Stationary-phase cells (108 cfu/ml) were inoculated into tryptic soy broth (TSB) acidified with citric acid (pH 2.7 and 5.0) with or without glutamate (10 mM) added, and incubated at 37 °C for 15 min. Survival percentages (calculated from viable colonies) varied from 2.47 ± 0.67% to 91.93 ± 5.83%. L. monocytogenes cells previously exposed to acid decontaminants (citric acid and peroxyacids) showed, when placed in acid TSB, a higher (P < 0.05) percentage of survival (average 38.80 ± 30.52%) than control and pre-exposed to non-acidic decontaminants strains (22.82 ± 23.80%). Similar (P > 0.05) survival percentages were observed in previously exposed to different decontaminants and control Salmonella strains. The GAD acid resistance system did not apparently play any role in the survival of L. monocytogenes or S. enterica at a low pH. This study demonstrates for the first time that prior exposure to acidic poultry decontaminants increases the percentage of survival of L. monocytogenes exposed to severe acid stress. These results have important implications for the meat industry when considering which decontaminant treatment to adopt.  相似文献   

8.
Di-d-fructofuranosyl 2,6′:2′,6 anhydride (DFA IV) was produced directly from sucrose using a single culture of recombinant Bacillus subtilis 168 carrying the levan fructotransferase (lft) gene. In this study, three plasmids carrying the degQ36 gene, which is a degQ allele of B. subtilis (degQ36) with a degQ36 mutation on its promoter, were constructed to overproduce intact DegQ in B. subtilis 168. The transformant B. subtilis/pHT-D36 (with the degQ36 gene) consumed sucrose and produced levan at a higher rate than B. subtilis/pHT43 (without the degQ36 gene). The transformant B. subtilis/pLFT-GD36, carrying the lft and degQ36 genes, also consumed sucrose at a higher rate and produced more DFA IV than B. subtilis/pLFT-G, carrying the lft but without the degQ36 gene. B. subtilis/pLFT-GD36 produced 43.5 g/l of DFA IV and consumed 240 g/l of sucrose (96% of added sucrose) by 72 h of cultivation, whereas B. subtilis/pLFT-G produced 23.4 g/l of DFA IV with 76.9 g/l of sucrose still remaining in the system. Sucrose-inducible expression vectors were also constructed, which made it possible to produce DFA IV without IPTG induction. Using these vectors, sucrose consumption rates were enhanced and DFA IV production was increased upon introduction of the degQ36 gene. From these results, it can be concluded that the additionally introduced regulatory gene, degQ, was able to stimulate sucrose conversion to levan, and therefore increased DFA IV production in this system.  相似文献   

9.
Streptococcus faecium IF-100, S. faecalis var. zymogenes RCM-29 (both toxigenic) and S. faecalis var. liquefaciens N.P. were subjected to 50–70°C in reconstituted nonfat dry cow's milk (NFDCM), spray-dried infant food (RIF), full cream buffaloe's milk (FCBM), normal saline and brain heart infusion (BHI) broth for different periods of time. S. faecium IF-100 was the most heat resistant in all the heating media as evidenced by high D values, i.e., 8.5, 8.5, and 6.5 min in RIF, FCBM and NFDCM, respectively, even at 70°C. The corresponding D values in respect to S. faecalis var. liquefaciens were 3.5 min each in the three menstrua. However, the heat resistance of the test cultures was the least in normal saline (D values ranging from 1 min (RCM-39) to 2.5 min (IF-100). The variations in D values of the 3 enterococci were statistically significant at 1%.  相似文献   

10.
Strain ST16PA, isolated from papaya was identified as Lactobacillus plantarum based on biochemical tests, PCR with species-specific primers and 16S rDNA sequencing. L. plantarum ST16PA produces a 6.5 kDa bacteriocin, active against different species from genera Enterobacter, Enterococcus, Lactobacillus, Pseudomonas, Streptococcus and Staphylococcus and different serotypes of Listeria spp. The peptide is inactivated by proteolytic enzymes, but not when treated with ??-amylase, catalase, lipase, Triton X-100, SDS, Tween 20, Tween 80, urea, NaCl and EDTA. However, presence of 1% Triton X-114 deactivates the bacteriocin. No change in activity was recorded after 2 h at pH values between 2.0 and 12.0, and after treatment at 100 °C for 120 min or 121 °C for 20 min. The mode of activity against Lactobacillus sakei ATCC 15521, Enterococcus faecalis ATCC 19443 and Listeria innocua 2030C was bactericidal, resulting in cell lysis and enzyme-leakage. No significant differences in cell growth and bacteriocin production were observed when strain ST16Pa was cultured in MRS broth at 26 °C and 30 °C for 24 h (25 600 AU/ml). However, even though strain ST16PA grows well in MRS broth at 15 °C and 37 °C, a reduction of bacteriocin production was observed (400 AU/ml and 1600 AU/ml, respectively). In addition, effect of MRS medium components, different initial pH and additions of glycerol or vitamins to the media on bacteriocin ST16Pa production was studied.Peptide ST16PA adsorbs (400 AU/ml) to producer cells. However, bacteriocin ST16Pa was adsorbed at 50% to cells of L. innocua 2030C and at 75% to L. sakei ATCC 15521 and E. faecalis ATCC 19433 when experiments were conducted at 30 °C and pH 6.5. Adsorption of bacteriocin ST16Pa to target cells at different temperatures, pH and in presence of potassium sorbate, sodium nitrate, sodium chloride, ascorbic acid, Tween 80 and Tween 20 were also studied. To the best of our knowledge, this is the first report on detection of L. plantarum in papaya.  相似文献   

11.
A total of 36 Lactobacillus sakei strains isolated from traditional dry sausage, produced without the use of starter cultures, were characterized in respect to their technological properties, i.e. growth and acidification kinetics, ability to grow at different temperatures, pH values or salt concentrations, gas production from glucose, heme-dependent catalase activity, inhibitory activity against pathogens and proteolytic and lipolytic activities.Growth rates were comprised between 0.12 and 0.55 gen/h; while acidification rates varied from 0.01 and 0.07 pH unit/h. All isolates were able to grow at pH 4.2–9.6 and at 15 °C on acetate agar supplemented with 4% NaCl, but were not able to grow at 0 and 45 °C and with 10% NaCl in the same pH conditions. However, 97% of the isolates were able to grow at 4 °C, but only 11%, and 55% were able to grow at pH 3.9 and with 6.5% NaCl, respectively. All isolates were homofermentative from glucose. Heme-dependant catalase activity was found for 97% of the isolates and 3% displayed antibacterial activity against Listeria innocua. Most isolates showed leucine and valine arylamidase and only one exhibited a lipase (C14) activity.Two strains were selected using a multi-variate analysis. Both of them showed a panel of properties highly desirable in sausage fermentation. We propose the use of these strains, in combination with coagulase-negative staphylococci as starter cultures in the studied small-scale facility in order to improve and standardize sausage safety and quality while preserving their typicality.  相似文献   

12.
The objective was to evaluate and compare the pulsed electric field (PEF) resistance of four Gram-positive (Bacillus subtilis, Listeria monocytogenes, Lactobacillus plantarum, Staphylococcus aureus) and four Gram-negative (Escherichia coli, E. coli O157:H7, Salmonella serotype Senftenberg 775W, Yersinia enterocolitica) bacterial strains under the same treatment conditions. Microbial characteristics such as cell size, shape or type of the cell envelopes did not exert the expected influence on microbial PEF resistance. The most PEF resistant bacteria depended on the treatment medium pH. For instance, L. monocytogenes, which showed the highest PEF resistance at pH 7.0, was one of the most sensitive at pH 4.0. The most PEF resistant strains at pH 4.0 were the Gram-negatives E. coli O157:H7 and S. Senftenberg. A subsequent holding of PEF-treated cells in pH 4.0 for 2 h increased the degree of inactivation up to 4 extra Log10 cycles depending on the bacterial strain investigated. Under these treatment conditions, the most PEF resistant bacterial strains were still the pathogens S. Senftenberg and E. coli O157:H7.

Industrial relevance

The design of appropriate food preservation processes by PEF requires the selection of an adequate target bacterial strain, which should correspond to the most PEF resistant microorganism contaminating food. This study indicates that the pH of the treatment medium plays an important role in determining this target bacterial strain. On the other hand, the combination of PEF and subsequent holding under acidic conditions has been proven to be an effective method in order to achieve a higher level of microbial inactivation.  相似文献   

13.
Sphingomyelinase C (SMC) was purified to homogeneity from the culture supernatant of Streptomyces griseocarneus NBRC13471. The purified enzyme appeared as a single band of 38 kDa by using an electropherogram trace. The molecular mass of the enzyme as determined by MALDI-TOF MS was 32,102 Da, indicating that SMC is monomeric in nature. Under experimental conditions, the highest enzyme activity was found at pH 9.0 and 50–55 °C, and the enzyme was stable from pH 5 to 10 and up to 37 °C. The SMC activity requires Mg2+ or Mn2+ and the order of potency to enhance the activity was Zn2+ ≥ Mn2+ > Cu2+ ≥ Fe2+. Phenylmethylsulfonyl fluoride and EDTA inhibited the enzyme activity, showing that SMC belongs to a group of metalloenzymes and a class of serine hydrolases. The enzyme activity was inhibited by DTT, but not by mercaptoethanol and iodoacetamide. SDS inhibited the enzyme activity; by contrast, Triton X-100 stimulated the activity. The N-terminal and internal amino-acid sequences were determined as H2N-APAAATPSLK, AREIAAAGFFQGND, and NTVVQETSAP. The gene encoding SMC consisted of 1020 bp encoding a signal peptide of 42 amino acids and a mature protein of 297 amino acids with a calculated molecular mass of 32,125 Da. The conserved region of DNase I-like family enzymes and the amino acid residues that are highly conserved in the active center of other bacterial SMCs were also found in the deduced amino acid sequence of S. griseocarneus SMC.  相似文献   

14.
In a previous study, we showed that coagulase positive staphylococci, which are often used as indicators for Staphylococcus aureus, are frequently found on pig carcasses. Further characterization of the strains identified only a minor part as S. aureus. Selected non-S. aureus strains were all identified as Staphylococcus hyicus, However, two studies described in this species strains that produce staphylococcal enterotoxins. The aim of the present study was to further characterize such coagulase positive S. hyicus strains isolated from pig carcasses and to assess the results for their food safety relevance. A total of 189 strains from two abattoirs were characterized. Phenotypically, 98.9% showed non-pigmented colonies, 99.5% no haemolysis and 67.7% were egg yolk-positive. DNase activity was found in all but one isolate. Only five of the 189 strains were resistant to the antimicrobials tested. One strain harboured the mecA gene. Exfoliative toxin genes were detected in 31 (16.4%), S. aureus enterotoxin genes in none of the strains.The PFGE genotyping results show only a limited number of clusters. Cluster I included more than 50% of the strains. The fact that similar or closely related PFGE patterns of S. hyicus can be found on carcasses after bleeding in both abattoirs indicates the occurrence of widespread strains in the Swiss pig population. Moreover, the genotyping results revealed a remarkable homogeneity in S. hyicus strains isolated from different process stages in abattoir B, which could indicate a recontamination problem with persisting strains.  相似文献   

15.
The influence of precultivation parameters on the ability of Staphylococcus xylosus and Staphylococcus carnosus to convert branched-chain amino acids—leucine, isoleucine and valine—into volatile flavour compounds was investigated using resting cells in a defined reaction medium. The studied precultivation parameters were: growth phase, temperature, NaCl concentration and the concentration of leucine, isoleucine and valine (only for S. xylosus). Flavour compounds were sampled by automatic static headspace collection and separated/quantified using gas chromatography/flame ionization detection (GC/FID).Main catabolic products from degradation of leucine, isoleucine and valine were the flavour intensive branched-chain acids: 2- and 3-methylbutanoic and 2-methylpropanoic acids. The precultivation parameters altered the production of the branched-chain acids significantly, but to various degrees for S. xylosus and S. carnosus.Production of branched-chain acids by S. carnosus was only influenced slightly by the growth phase and not by changing the NaCl concentration between 4.0% and 10.0% (w/w). Lowering the temperature from 28°C to 18°C significantly decreased S. carnosus’ generation of branched-chain acids. In contrast, S. xylosus was significantly influenced by all precultivation parameters, in particular by the growth phase. Cells taken from growing cultures had a much higher production of branched-chain acids compared to cells taken from stationary cultures. Addition of leucine and valine to the precultivation medium enhanced the production of branched-chain acids whereas addition of isoleucine had the opposite effect.  相似文献   

16.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

17.
The effects of organic acids (lactic and acetic) and extracellular pH (pHex) on the intracellular pH (pHi) of Saccharomyces cerevisiae and Candida milleri during co-fermentation with lactobacilli were investigated by using Fluorescence-Ratio-Imaging-Microscopy (FRIM). Yeasts were grown in a system that partially mimics sourdough composition, using individual fermentation and combinations with lactic acid bacteria. Fermentations were carried out at 25 °C for 22 h at an initial pH of 5.3. The two yeast species grew equally well during the co-fermentations with lactobacilli. Our results reveal large differences in pHi values between the two yeast species, primarily in relation with pHex changes, while the concentration of organic acids did not seem to affect the pHi. Moreover, the pHi of S. cerevisiae seemed to be affected by maltose consumption. The pH gradient (difference between internal and external pH) of S. cerevisiae remained rather constant, ranging from 2.0 to 2.5. C. milleri instead exhibited a higher pHi, that remained constant throughout the experiments and was unaffected by pHex and/or sugar consumption. Thus, the pH gradient of C. milleri varied much more than that of S. cerevisiae, ranging from 2.3 to 3.8. Our results suggest that the two yeast species have different pHi regulation mechanisms.  相似文献   

18.
We studied the production and stability of chlorine dioxide (ClO2) in organic acid solutions and its effectiveness in killing Bacillus cereus spores. Sodium chlorite (5000, 10,000, or 50,000 μg/ml) was added to 5% acetic, citric, or lactic acid solution, adjusted to pH 3.0, 4.0, 5.0, or 6.0, and held at 21 °C for up to 14 days. The amount of ClO2 produced was higher as the concentration of sodium chlorite was increased and as the pH of the acid solutions was decreased. However, the stability in production of ClO2 was enhanced by increasing the pH of the organic acid solutions. To evaluate the lethal activity of ClO2 produced in various acid solutions as affected by acidulant and pH, suspensions of B. cereus spores were treated at 21 °C for 1, 3, 5, or 10 min in hydrochloric acid or organic acid solutions (pH 3.0, 4.0, 5.0, or 6.0) containing ClO2 at concentrations of 100, 50, or 25 μg/ml. Populations of viable spores treated with ClO2 at concentrations of 100 or 50 μg/ml in organic acid solutions decreased more rapidly than populations treated with the same concentrations of ClO2 in HCl. Rates of inactivation tended to increase with higher pH of ClO2 solutions. Results show that ClO2 formed in organic acid solutions has higher stability and is more lethal to B. cereus spores than ClO2 formed at the same concentration in HCl solution. This finding emphasizes the benefits of using organic acid solutions to prepare ClO2 intended for use as an antimicrobial.  相似文献   

19.
The effect of common defrosting practices of ground beef, including (i) defrosting in the refrigerator (5 °C for 15 h), (ii) defrosting at room temperature (25 °C for 12 h) and (iii) defrosting in the microwave, on the heat tolerance of artificially inoculated Listeria monocytogenes and Salmonella Enteritidis, was studied. The thermal inactivation of S. Enteritidis was not, overall, affected by defrosting practices. In contrast, defrosting at room temperature resulted, overall, in an increased heat tolerance of L. monocytogenes compared to the rest tested defrosting practices. Inactivation kinetics of the two pathogens for the different defrosting practices were determined by fitting the data to the Weibull model. The δ parameter of the Weibull model (heat challenge time (min) required for the first 1-log reduction) for S. Enteritidis and for defrosting at 25 °C, microwave defrosting, defrosting at 5 °C and for the control (fresh ground beef inoculated with the pathogens just before the heat challenge trials) was 1.13, 1.62, 1.60 and 0.96, respectively, while the corresponding values for L. monocytogenes were 20.13, 10.82, 9.95 and 9.47, respectively. The findings of this study should be useful in risk assessments and in developing food handling guidelines for the consumers.  相似文献   

20.
This study examined the utilization patterns of key carbon sources (CS, 24: including key sugars, amino acids and fatty acids) in maize by strains of Aspergillus flavus and Fusarium verticillioides under different water activity (aw, 0.87–0.98 aw) and temperature (20–35 °C) values and compared the niche overlap indices (NOI) that estimate the in vitro CS utilization profiles [Wilson, M., Lindow, S.E., 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Applied and Environmental Microbiology 60, 4468–4477.]. The ability to grow in these key CS in minimal media was studied for 120 h in 12 h steps. The NOI was calculated for inter-species (F. verticillioidesA. flavus) and for intra-species (A. flavusA. flavus) using CS utilization patterns over the range of interacting environmental conditions. 30 °C, over the whole aw range examined, was found to be optimal for utilization of the maximum number of CS by A. flavus. In contrast, for F. verticillioides this was more so at 20 °C; 25 °C allowed a suboptimal usage of CS for both species. NOIs confirmed the nutritional dominance of A. flavus at 30 °C, especially at lower aw levels and that of F. verticillioides at 20 °C, mainly at 0.95 aw. In other conditions of aw, based on CS utilization patterns, the data indicated that A. flavus and F. verticillioides occupied different ecological niches. The variability in nutritional sources utilization between A. flavus strains was not related to their ability to produce aflatoxins (AFs). This type of data helps to explain the nutritional dominance of fungal species and strains under different environmental conditions. This could be useful in trying to find appropriate natural biocontrol microorganisms to compete with these mycotoxigenic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号