共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
场限环结构以其简单的工艺和较高的效率,在垂直双扩散金属氧化物场效应晶体管终端结构中得到广泛应用,但其性能的提高也有限制。沟槽型终端结构对刻蚀工艺要求较高,并未在实际生产中得到大量应用。将场限环终端结构与沟槽终端结构相结合,设计了一种沟槽型场限环终端,在149.7 μm的有效终端长度上实现了708 V的仿真击穿电压。此结构可以得到较大的结深,硅体内部高电场区距离表面较远,硅表面电场仅为1.83E5 V/cm,具有较高的可靠性。同时,工艺中只增加了沟槽刻蚀和斜离子里注入,没有增加额外的掩膜。 相似文献
3.
4.
基于垂直双扩散金属氧化物(VDMOS)场效应晶体管终端场限环(FLR)与场板(FP)理论,在场限环上依次添加金属场板与多晶硅场板,并通过软件仿真对其进行参数优化,最终实现了一款700 V VDMOS终端结构的优化设计。对比场限环终端结构,金属场板与多晶硅复合场板的终端结构,能够更加有效地降低表面电场峰值,增强环间耐压能力,从而减少场限环个数并增大终端击穿电压。终端有效长度仅为145μm,击穿电压能够达到855.0 V,表面电场最大值为2.0×105V/cm,且分布比较均匀,终端稳定性和可靠性高。此外,没有增加额外掩膜和其他工艺步骤,工艺兼容性好,易于实现。 相似文献
5.
6.
设计了一种用于3.3 kV4H-SiC肖特基二极管的场限环(FLR)结终端保护结构。该结终端保护结构是通过在高能离子注入形成二极管p+有源区的同时在结边缘形成多个不同间距的p+场限环来实现的,以避免多次离子注入。借助半导体数值仿真软件Silvaco,对制备二极管所用的4H-SiC材料外延层耐压特性进行了仿真验证;对场限环的环间距和场限环宽度进行了优化,形成由34个宽度5μm的场限环构成的场限环结终端结构。以此为基础,采用4英寸(1英寸=2.54 cm)n型4H-SiC外延片成功制备了3.3 kV4H-SiC二极管器件。简述了制备工艺流程,给出了部分关键工艺参数。对二极管芯片进行了在片测试和分析,反向漏电流密度1 mA/cm2时的击穿电压约为3.9 kV,且70%以上的二极管耐压可达到3.6 kV以上,验证了这一场限环结终端的可行性。 相似文献
7.
8.
一种新型高压功率器件终端技术 总被引:2,自引:1,他引:2
为了改善高压功率器件的击穿电压、节省芯片面积,提出一种P-场限环结合P+补偿结构、同时与金属偏移场板技术相结合的高压终端技术.采用TCAD(ISE)时该技术进行模拟,结果表明,该技术具有比较好的面积优化和击穿电压优化特性. 相似文献
9.
10.
11.
场板与场限环是用来提高功率FRED抗电压击穿能力的常用终端保护技术,本文分别介绍场板与场限环结终端结构原理和耐压敏感参数,然后采取场板和场限环的互补组合,通过Synopsis公司MEDICI4.0仿真工具优化设一款耐压1200V的FERD器件终端结构,最后通过实际流片验证此终端结构具有良好的电压重复性及一致性。 相似文献
12.
13.
14.
15.
《电子元件与材料》2016,(11):38-41
为了提高芯片面积利用率,采用单区结终端扩展(JTE)与复合场板技术设计了一款700 V VDMOS的终端结构。借助Sentaurus TCAD仿真软件,研究单区JTE注入剂量、JTE窗口长度和金属场板长度与击穿电压的关系,优化结构参数,改善表面和体内电场分布,提高器件的耐压。最终在120.4mm的有效终端长度上实现了838 V的击穿电压,表面最大电场为2.03×10~5 V/cm,小于工业界判断器件击穿的表面最大电场值(2.5×10~5 V/cm),受界面态电荷的影响小,具有较高的可靠性,且与高压深阱VDMOS工艺兼容,没有增加额外的掩膜和工艺步骤。 相似文献
16.
为了解决功率器件高击穿电压与减小表面最大电场需求之间的矛盾,提出了一种高压功率器件终端场板改进方法。通过调节金属场板和多晶硅场板的长度,使金属场板覆盖住多晶硅场板,最终使得两者的场强相互削弱,从而减小表面最大电场。采用TCAD(ISE)软件对该结构进行仿真验证,结果表明该结构能够在保证高耐压的前提下减小表面最大电场。基于所提方法,设计出了一种七个场限环的VDMOSFET终端结构,其耐压达到了893.4 V,表面最大电场强度只有2.16×105 V/cm,提高了终端的可靠性。 相似文献
17.
功率MOSFET在现代电子工业中已经得到了广泛的运用,然而在高压功率MOSFET器件中,如何平衡功率MOSFET的击穿电压与导通电阻的冲突一直是研究热点。结合超结理论和传统功率VDMOSFET的生产工艺设计了一款高压超结VDMOSFET器件,运用半导体器件仿真软件对器件结构进行优化,得到P柱区和N柱区掺杂浓度和厚度的最优值和工艺参数。仿真结果表明,设计的超结VDMOSFET器件击穿电压和导通电阻分别为946 V和0.83Ω,很好地平衡了功率MOSFET击穿电压与导通电阻的冲突。 相似文献
18.
19.
为使3300 V及以上电压等级绝缘栅双极型晶体管(IGBT)的工作结温达到150℃以上,设计了一种具有高结终端效率、结构简单且工艺可实现的线性变窄场限环(LNFLR)终端结构。采用TCAD软件对这种终端结构的击穿电压、电场分布和击穿电流等进行了仿真,调整环宽、环间距及线性变窄的公差值等结构参数以获得最优的电场分布,重点对比了高环掺杂浓度和低环掺杂浓度两种情况下LNFLR终端的阻断特性。仿真结果表明,低环掺杂浓度的LNFLR终端具有更高的击穿电压。进一步通过折中击穿电压和终端宽度,采用LNFLR终端的3300 V IGBT器件可以实现4500 V以上的终端耐压,而终端宽度只有700μm,相对于标准的场限环场板(FLRFP)终端缩小了50%。 相似文献
20.
设计了一种具有分组缓变间距场限环(MGM-FLR)结终端结构的SiC功率MOSFET,并基于国内现有的SiC电力电子器件工艺平台进行了流片,完成了1 700 V/10 A SiC功率MOSFET样品的制备。测试结果表明,MGM-FLR结构有效调制并优化了结终端区域的表面电场强度分布,SiC MOSFET漏电流为1μA时最大击穿电压达到2 400 V,为理想平行平面结击穿电压的91%。器件的比导通电阻约为36 mΩ·cm2,阈值电压为2.9 V。对制备的SiC功率MOSFET进行了150℃、168 h的高温反偏(HTRB)可靠性测试评估,实验前后的击穿电压变化量不超过100 V,初步验证了MGM-FLR结终端结构的鲁棒性和可行性。 相似文献