首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
光纤陀螺输入轴失准角温度补偿研究   总被引:2,自引:0,他引:2  
提高温度特性是光纤陀螺仪工程化的一个难题,温度补偿是解决该问题的一种有效方法。光纤陀螺与温度相关误差项主要为零漂和标度因数,输入轴失准角也是影响光纤陀螺应用的一个重要误差项。在大量试验的基础上,分析了光纤陀螺输入轴失准角误差产生机理,采用多项式拟合方法建立了输入轴失准角误差全温模型,对多套光纤陀螺进行了全温补偿。试验结果表明,输入轴失准角补偿前全温变化在2?10-3rad数量级,补偿后全温变化小于3?10-4rad,精度提高了近一个数量级,大大提高了光纤陀螺仪的全温性能。  相似文献   

2.
微机电系统(MEMS)陀螺仪的测量误差是影响微惯性导航系统精度的重要因素.为了提高微惯性导航系统的精度,提出了一种利用三轴转台完成MEMS陀螺仪的标定方法.根据MEMS陀螺仪的误差模型,设计了标定试验方案和误差模型参数的辨识方法,并通过小波阈值去噪的方法对陀螺的输出数据进行去噪处理.试验与仿真对比分析结果表明:经误差补偿和去噪后MEMS陀螺仪的测量精度提高1~2个数量级,同时验证了该标定方法的正确性、有效性.  相似文献   

3.
结合陀螺仪、加速度计误差模型,实现了以微机电系统(MEMS)陀螺仪与MEMS加速度计为基础的姿态估计硬件仿真系统,可用于模拟任意噪声强度和安装偏差下三轴捷联惯导系统(INS),即按照给定运动曲线仿真输出陀螺仪与加速度计数据,为设计姿态估计算法提供仿真验证平台.同时,以姿态四元数为状态变量,载体俯仰角与横滚角为观测值设计了基于扩展卡尔曼滤波器(EKF)的姿态估计算法,俯仰角估计误差小于0.04°,横滚角估计误差小于0.05.,偏航角漂移速度0.01(°)/s.  相似文献   

4.
一种微惯性测量单元标定补偿方法   总被引:2,自引:0,他引:2  
在介绍微惯性测量单元组成与结构的基础上,根据MEMS惯性器件的输出特性,建立了微惯性测量单元中加速度计和陀螺仪的数学标定模型,提出并推导了一种适用于微惯性测量单元的标定方法,该方法可以得到微惯性测量单元中惯性传感器的零位、标度因数、安装误差系数及g值敏感项等33个参数;然后,具体介绍了通过加速度计重力场静态翻滚试验和陀螺仪恒角速率试验对MIMU中参数标定的方法和步骤,并对实验室自研的MIMU进行了标定;最后利用得到的标定参数对测试结果进行了误差分析与补偿;实验结果表明,该方法使MIMU的测量精度提高了1~2个数量级,能够满足姿态解算及导航计算的精度要求。  相似文献   

5.
张慧  李杰  秦丽  刘俊  王一焕 《传感技术学报》2015,28(12):1774-1778
针对MEMS大量程陀螺仪量程较大,一般的标定设备达不到需要的转速,因此不适合用三轴位置速率转台标定。设计了一种新的标定设备,提出了一种适用于大量程微机电陀螺仪的标定方法,并设计了GUI操作界面。根据微机电陀螺仪的输出数学模型,推导了如何得到MEMS陀螺仪的零点和标定因数等参数。通过实验数据分析可知,大量程微机电陀螺仪标定设备可以标定20 r/s的大量程陀螺仪。该设备原理简单且易于实现,具有较高的应用价值。  相似文献   

6.
应用MEMS陀螺仪测量人体手臂运动姿态时,针对陀螺仪受线加速度干扰导致测量姿态发散的问题,提出基于Kalman滤波算法的姿态误差补偿方法;该方法首先将陀螺仪采集到的角速度通过方向余弦算法解算得到姿态角,并将陀螺仪动态漂移造成的姿态角误差视为时变信号,通过建立姿态角漂移误差的状态方程及观测方程,应用卡尔曼滤波算法,实现对姿态角漂移误差的估计,最终达到对陀螺仪动态漂移误差的补偿;实验与仿真结果表明,应用该算法能够有效的抑制线加速度干扰导致的陀螺仪测量的姿态发散,适用于陀螺仪对人体手臂运动姿态的测量。  相似文献   

7.
三轴微机电系统(micro-electro-mechanical systems,MEMS)陀螺仪在制造和应用过程中会受到系统参数不确定和外界干扰的影响,降低MEMS陀螺仪的检测精度.本文提出一种基于自适应干扰估计的滑模控制策略对MEMS陀螺仪进行参数不确定和干扰补偿,同时实现轴向轨迹跟踪,从而提高检测精度.相比传统滑模控制方法,该策略利用趋近律概念描述滑模趋近运动,改善趋近运动阶段的动态品质,同时利用干扰观测器在线实时估计系统未知干扰,大大降低滑模面的切换增益,有效地降低滑模面抖振.最后利用Lyapunov直接法证明了系统的渐进稳定性和干扰估计的收敛性.仿真结果表明了该策略的有效性.  相似文献   

8.
针对国产MEMS陀螺仪MSG7000D拥有数字输出接口的特点,设计了一种基于FPGA的MSG7000D陀螺仪实时数据记录系统;该系统以FPGA为主控芯片,系统控制模块通过SPI串行通信接口与陀螺仪进行信息交换,从而实现对陀螺仪输出数据的记录、存储;利用三轴位置速率摇摆温控转台对系统设计进行试验论证;试验结果表明,文章设计的MEMS陀螺仪MSG7000D实时数据记录系统有效、实用,为该陀螺仪的后续工程应用奠定了基础,具有一定的工程应用价值。  相似文献   

9.
MEMS陀螺仪参数校准方法研究   总被引:1,自引:0,他引:1  
针对陀螺仪标定成本与精度之间矛盾的问题,建立了陀螺仪的误差模型,探索了一组最佳标定位置,提出了针对陀螺仪的零偏、标度因数和安装误差角等参数引起测量数据出现偏差的4位置标定方法.并将该方法应用于机载系统的姿态测量单元,估计出了陀螺的标定参数,并对标定后的陀螺仪进行试验测试.测试结果表明,标定后陀螺仪的性能满足预期试验要求,验证了该标定方法的正确性和有效性.  相似文献   

10.
为了提高某型微机电系统(MEMS)陀螺仪输出精度,静态采集该型MEMS陀螺仪原始数据,通过Allan方差分析法,对陀螺仪随机误差成分进行辨识;以z轴输出为例,利用时间序列分析法,建立其随机误差的自回归滑动平均(ARMA)模型。根据拟合后的模型参数设计卡尔曼滤波器,对原始数据进行滤波处理,再对预滤波后的数据进行Allan方差分析。结果表明:滤波后的量化噪声、角度随机游走、零偏不稳定性误差系数分别减小了2. 8%,19. 8%和8. 1%。卡尔曼滤波器能够有效抑制MEMS陀螺仪的随机误差,提高输出精度。  相似文献   

11.
李杰  张文栋  刘俊 《传感技术学报》2006,19(5):2215-2219
从工程实用的角度出发,探讨了MEMS陀螺仪随机漂移误差的有效补偿方法.首先采用时间序列分析的方法建立了MEMS陀螺仪的随机漂移误差模型,然后阐述了用基于时间序列模型的Kalman滤波方法减小该漂移误差的具体方法.对某MEMS陀螺仪实测数据的误差补偿结果表明,所介绍的滤波方法能够有效地抑制其漂移误差,提高MEMS陀螺仪在实际系统中使用精度.  相似文献   

12.
提出一种基于改进粒子群算法(PSO)优化最小二乘支持向量机(LSSVM)的MEMS陀螺随机漂移的预测模型建立方法。该方法首先应用最小二乘支持向量机对MEMS陀螺随机漂移建立预测模型,然后应用改进粒子群算法对该模型进行优化,最后应用参数优化后的LSSVM预测模型对随机漂移进行预测。该方法不仅解决了支持向量机训练速度慢和所需计算资源多的问题,而且文中提出的改进的惯性权值递减策略使PSO算法在全局或局部搜索能力上的侧重具有更好的适应度。实验结果表明,该预测模型可以有效地进行陀螺随机漂移的预测,且预测效果优于基本PSO优化的最小二乘支持向量机。  相似文献   

13.
振动陀螺谐振子振型一般采用激光进行非接触式测量,这种方法存在设备成本高、操作复杂、效率低等问题,因此,提出了一种基于MEMS声传感器的圆柱壳体振动陀螺谐振子振型测试方法。该方法利用体积小,指向性高的MEMS声传感器对谐振子振动声场进行高分辨率测量,获得精确的谐振子振动分布情况,建立了谐振子声波测试实验系统,进行了测试实验,并与激光测振仪的测量结果进行比对。实验结果表明,该测试系统具有较高的振型测量精度。这种测试方法成本低,操作简便,测量精度高,可以实现谐振子振型的高精度快速测量,为后续的谐振子修形及陀螺控制提供重要基础。  相似文献   

14.
小波阈值去噪和FAR建模结合的MEMS陀螺数据处理方法   总被引:1,自引:1,他引:0  
为解决MEMS陀螺输出信号中噪声大、随机漂移严重的问题,提出了一种小波阈值去噪和函数系数自回归FAR建模结合的MEMS陀螺数据处理方法。采用小波阈值去噪法对MEMS陀螺输出信号去噪,提高其信噪比;为克服常用的自回归AR模型无法解决MEMS陀螺随机漂移存在的非线性问题,引入FAR模型对MEMS陀螺的随机漂移进行建模。实验结果表明,此数据处理方法可有效抑制MEMS陀螺输出噪声,且与AR模型相比,FAR模型能更精确地对MEMS陀螺随机漂移进行建模及预测。  相似文献   

15.
This paper proposes one study method of resonant MEMS gyroscope based on the circuit in order to solve problems such as long verification cycle and high cost of the MEMS gyroscope structure design. Firstly, on the basis of Euler–Bernoulli beam theory, this study establishes resonant beam vibration equation, obtains semi-Mathieu equation after normalization, namely parameter excitation characteristic equation of the frequency micro gyroscope, then deduces the characteristic equation in consideration of the damping condition, and uses the parameter perturbation method to study the output characteristic of gyroscope under ideal and damping states. Then, the analog circuit is innovatively used to obtain the characteristic equation of gyroscope under ideal and damping states, subsequently, the characteristic equation is normalized. It is realized that the dynamics equation is equivalent to the analog circuit. Finally, the experimental study is carried out, and experimental device for the frequency micro gyroscope harmonic oscillator parameter excitation characteristic is produced. Meanwhile, the analog circuit output waveform and frequency change correctness are verified by using the Runge–Kutta method and the parameter perturbation method, respectively. The experimental results show that the experiment device can be used to study the nonlinear vibration characteristics of the gyroscope.  相似文献   

16.
MEMS陀螺温度漂移严重影响系统的测量精度。传统的BP神经网络建模补偿容易使权值和阈值陷入局部极小值,导致网络训练失败。陀螺输出信号中的高频噪声也会影响模型精度。针对上述问题,该文提出一种Kalman滤波结合粒子群算法(PSO)优化BP神经网络的MEMS陀螺温度漂移补偿方法。首先对陀螺进行了温度漂移测试实验,然后采用Kalman滤波对实验数据进行降噪,最后建立陀螺温度漂移模型,从而实现温度漂移的补偿。实验结果表明,采用该方法补偿后MEMS陀螺在不同温度下的输出方差降低了65.09%,与传统的BP神经网络相比补偿精度明显提高。  相似文献   

17.
为解决微机电(micro electromechanical system,MEMS)陀螺仪在随机振动力学环境中的动态误差问题,提出一种MEMS陀螺仪动态误差的补偿方法,建立动态误差模型。通过对MEMS陀螺仪动态误差影响因素的分析,在MEMS陀螺仪静态误差模型基础上加入与振动输入相关的误差项,减小由于随机振动引入的误差,提高MEMS陀螺仪在随机振动环境下的测量精度。结合实例,对所提模型进行仿真分析,验证了其可行性和有效性。  相似文献   

18.
利用计算机软件对有限元法构建的微机械陀螺仪模型进行分析可以掌握其各种参数。根据静电梳状驱动结构,设计符合性能指标的陀螺仪结构,并利用有限元分析法借助ANSYS软件对陀螺仪进行模态分析,从而得出陀螺仪的驱动模态和敏感模态,为已经设计的结构提供分析和修正的参考,从而提高微机械陀螺仪设计结构的品质因数。  相似文献   

19.
Dong  Xianshan  Huang  Qinwen  Yang  ShaoHua  Huang  Yun  En  Yunfei 《Microsystem Technologies》2019,25(8):3097-3103

With the development of MEMS gyroscope, acceleration sensitivity is becoming an important factor in application. The acceleration sensitivity would produce an obvious output error, and researchers mainly focus on bias acceleration sensitivity. Yet, in environment of high acceleration and angular rate, it is the scale factor acceleration sensitivity that influences the output most, and there is little research on it. In this paper, scale factor acceleration sensitivity of MEMS gyroscope in high acceleration environment is investigated with our established theoretical model and experimental measurement. Based on our proposed method of measuring the acceleration sensitivity in environment of high acceleration and angular rate, the MEMS tuning fork gyroscope is used for the measurement. The results show that the output error caused by acceleration can be up to − 30.1°/s and the scale factor acceleration sensitivity contributes the most. The coefficient of scale factor acceleration sensitivity is 35 ppm/g under 50g acceleration, and this coefficient increases linearly with acceleration that coincides with theoretical model. Lastly, some suggestions of decreasing scale factor acceleration sensitivity are given. This work is useful for the researchers to improve the performance of acceleration sensitivity of MEMS gyroscope.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号