首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fertilization at plantation establishment and later age is often required to maximize stand growth of slash pine (Pinus elliottii) in subtropical Australia. A field experiment was conducted to examine stand growth response of slash pine in the first 11.5 years of plantation following (1) initial fertilization at plantation establishment with phosphorus (P) at 11, 22, 45 and 90 kg P ha–1 which were either banded or broadcast in the presence or absence of basal fertilizers containing 50 kg nitrogen (N) ha–1, 50 kg potassium (K) ha–1 and 5 kg copper (Cu) ha–1 and (2) additional application of 40 kg P ha–1 at age 10 years.The initial P fertilization significantly increased the stand growth in the first 9.6 years. The P banded application was more effective in improving the stand growth than the P broadcast application. Application of the N, K and Cu basal fertilizers did not affect the stand growth. Overall, 53–73% of the variation in basal area and volume growth in the first 9.6 years was explained by the initial P fertilization, indicating that P deficiency was the major factor limiting the stand growth under the experimental conditions. Optimum plantation age, at which the maximum periodical annual increment (PAI) of basal area was obtained, increased from age 10.9 to 12 years when the initial P rate increased from 11 to 90 kg P ha–1. Application of additional 40 kg P ha–1 at age 10 years resulted in a further improvement in the stand growth at age 11.5 years. With 66% of the variation in basal area PAI between ages 9.6 and 11.5 years, 50% was explained by the initial P fertilization and 16% by the additional P applied at age 10 years. Similarly, 51% and 12% of the variation in volume PAI were attributed to the initial P fertilization and the additional P application, respectively. This highlights the need of refertilization with P on some established stands of slash pine at later ages.  相似文献   

2.
Foliar P concentration of slash pine was significantly related to the stand growth in the first 11.5 years. The relationship between foliar P concentration and total stand growth at foliar sampling improved as the plantation aged with coefficient of determination (R2) increasing from 0.14–0.15 at age 3.3 years to 0.56–0.65 at age 9.6 years. However, only 12–18% of the variation in total stand growth was explained by foliar P concentration at age 11.5 years when additional 40 kg P ha–1 was applied to the stands at age 10 years. This suggests that caution should be exercised in interpreting the foliar P concentrations of the established stands which had received application of P fertilizer just prior to foliar sampling. Periodic stand growth was more closely related to the foliar P concentration than total stand growth. Basal area and volume periodic annual increment (PAI) was better related to the foliar P concentration than height PAI.Optimum foliar P concentration, at which the maximum stand growth was obtained, was between 0.093% and 0.110%. The optimum foliar P concentration for height PAI immediately prior to foliar sampling decreased from 0.097% at age 3.3 years to 0.070% at age 9.6 years. Critical foliar P concentration at age 9.6 years, at which 90% of the maximum basal area growth was obtained, was between 0.066% and 0.070%. Both optimum and critical foliar P concentration might decrease as the plantation aged.  相似文献   

3.
Research was conducted at two sites located in medium and low altitude zones in eastern Uganda. The aim of the study was to evaluate the benefit of Velvet bean (Mucuna pruriens) and inorganic N fertilizer in improving maize production in contrasting agro-ecological zones over two seasons. The medium altitude zone (Bulegeni) is a high-potential agricultural zone, with much more reliable rainfall and soils with high-productivity rating. The opposite is true for the low-altitude zone (Kibale). The soils were fertile for the site in the high-potential zone and poor in the low-potential zone. Over 22 weeks of fallow or relay with maize, Mucuna produced on average 8.2 t ha–1 dry matter, accumulating 170 kg N ha–1, with 57% of the N derived from the atmosphere in the low-potential zone, compared to 11.6 t ha–1 dry matter, 350 kg N ha–1, with 43% of the N derived from air, in the high-potential zone. Between 77 and 97% of the Mucuna-accumulated N was released over a period of 25 weeks, at a rate of 0.081 and 0.118 week–1 in the high- and low-potential zones, respectively. The N-balance study shows that 93% of the applied N was accounted for in the high-potential zone, compared to 61% in the low-potential zone, due to differences in soil texture, soil fertility and maize biomass production at the two sites. As much as 44–73% of the N remained in the soil in the high-potential zone, compared to 39–53% in the low-potential zone, which might benefit the subsequent crops. There was a significant increase in maize yield in response to the added N, both from urea or Mucuna. The average increment above the control (continuous maize) was 3.2 t ha–1 in the high-potential zone and 1.0 t ha–1 in the low-potential zone. The maize yield increase over two seasons added up to 3.1 t ha–1 with the application of inorganic fertilizers, and 1.9 t ha–1 with a preceding Mucuna–maize relay in the high-potential zone, compared to an average of, 1.7 t ha–1 with application of inorganic fertilizers and with Mucuna–maize relay in the low-potential zone. Application of P fertilizers with either N supply strategy significantly increased maize yield in the low-potential zone only, resulting in an additional 0.8 t ha–1 for the inorganic N fertilizers and 1.3 t ha–1 for a preceding Mucuna–maize relay. Apparently, P fertilizers are needed on poor soils. Clearly farmers stand to gain in terms of maize production from fertilizers as well as from the use of Mucuna, with more benefits from inorganic fertilizers in the high-potential zone.  相似文献   

4.
In the previous paper, we reported the stand growth of slash pine (Pinus elliottii) during the first 11.5 years of plantation in response to (1) initial fertilization at plantation establishment with P rates of 11, 22, 45 and 90 kg P ha–1 which were either banded or broadcast in the presence or absence of basal fertilizers containing 50 kg N ha–1, 50 kg K ha–1 and 5 kg Cu ha–1 and (2) application of additional 40 kg P ha–1 at age 10 years. Here we present the responses in foliar nutrient concentrations of slash pine in the first 11.5 years to the initial fertilization and the additional P applied at age 10 years.Foliar N and K concentrations in the first 9.6 years of plantation decreased with the initial P rate. Application of the basal fertilizers improved foliar Cu concentration. Foliar Ca and Mg concentrations increased linearly with the initial P rate. The initial fertilization did not affect foliar Mn concentration in the first 9.6 years. Foliar P concentration increased quadratically with the initial P rate, which accounted for 77–86% of the variation in foliar P concentration. Most of the explained variation in foliar nutrient concentrations was attributable to the plantation age except for foliar P concentration. In the case of foliar P concentration, 53% was explained by the initial P rate, 31% by the plantation age and 2% by the positive interaction between the initial P rate and the plantation age. Foliar P concentration of slash pine at age 11.5 years increased quadratically with the initial P rate and linearly with the additional 40 kg P ha–1 applied at age 10 years, accounting for 81% of the variation in the foliar P concentration. Foliar nutrient analysis indicated that P was the major limiting nutrient affecting the stand growth of slash pine in the first 11.5 years.  相似文献   

5.
The investigation evaluated the productivity of plantain intercropped with cassava, cocoyam and yam, fertilized annually with 0, 320 and 480 kg N ha–1 respectively. Yields from nitrogen fertilized intercrops were higher than those of unfertilized treatments. In plantain + cassava intercrop receiving 480 kg N ha–1 plantain growth was suppressed. Plantain intercropped with yam and fertilized with 320 kg N ha–1 matured early and produced better bunches than other treatments. Plantain + yam or cocoyam intercropping systems fertilized with 320 kg N ha–1 were recommended because of improved plantain establishment and increased combined crop yields.  相似文献   

6.
Peach palm (Bactris gasipaes Kunth) is increasingly grown in the tropics for its heart-of-palm and fruit. Determining fertilization response and diagnosing nutrient status in peach palm may require methods that consider the particularities in nutrient acquisition and recycling of perennial crops. Responses to nutrient additions, and the diagnostic value of soil and foliar analyses were examined in three field experiments with three-year old peach palm stands on Oxisols in Central Amazonia. To diagnose P-deficiency levels in soils, samples from 0–5 cm and 5–20 cm depth were analyzed for available P by different methods (Mehlich-1, Mehlich-3 and Modified Olsen). The second and fifth leaves were analyzed to assess N, P and K deficiencies. Field experiments involved several combinations of N (from 0 to 225 kg ha–1 yr–1), K (from 0 to 225 kg ha–1 yr–1) and P (from 0 to 59 kg ha–1 yr–1). Palms on control plots (unfertilized) and those receiving 225 kg ha–1 yr–1 N and 2 Mg ha–1 of lime yielded between 4 and 19% of the maximum growth which was obtained with N, P and K applications. In one of the experiments, yield of heart-of-palm was positively related to N additions at the lowest levels of P (8.6 kg ha–1 yr–1) and K (60 kg ha–1 yr–1) additions. In one experiment, critical leaf N level was 2.5% for the second leaf and 2.2% for the fifth leaf. Some growth responses to P additions at constant N and K levels were observed (e.g., 797 kg ha–1 yr–1 of heart-of-palm with 39.3 kg ha–1 yr–1 of applied P, and 632 kg ha–1 yr–1 of heart-of-palm with 10.9 kg ha–1 yr–1 of applied P in one experiment, and 2334 kg ha–1 yr–1 of heart-of-palm with 39.3 kg ha–1 yr–1 of P and 1257 kg ha–1 yr–1 of heart-of-palm with 19.7 kg ha–1 yr–1 of P in another trial). In the experiment for fruit production from peach palm, total plant height did not respond to P additions between 19.7 and 59 kg ha–1 yr–1 and K additions between 75 and 225 kg ha–1 yr–1. Leaf P levels were found to be above the proposed critical levels of 0.23% for the third leaf and 0.16% for the fifth leaf. Plants in this experiment, however, showed evident symptoms of Mg deficiency, which was associated with a steep gradient of increasing Mg concentration from the fifth leaf to the second leaf. Standard leaf diagnostic methods in most cases proved less useful to show plant N and P status and growth responses to N and P additions. Soil P determined by common extractions was in general too variable for prediction of growth.  相似文献   

7.
Two trials inPinus radiata growing on different sites in N.S.W. allowed consideration of fertilizer applications after 2nd or 3rd thinning. The trials included factorial applications of N and P at a single thinning intensity plus a further treatment which allowed assessment of different thinning intensities. The most significant growth responses were obtained by application of N and P in combination. The largest response (additional productivity compared with the unfertilized control) occurred 4 years after application and after 7 years there was no additional absolute response for either of the two sites. The largest fertilizer response was 70 m3 ha–1 over 7 years on one site and 36 m3 ha–1 on the other, indicating differences in absolute responses between sites. It was concluded that in planning treatments the most responsive sites near the end of the rotation should be selected to maximise economic returns. Foliage analyses indicated differences between sites at the commencement of the study. It was concluded that either a single year of foliage analyses at study commencement is of value, or sampling every year of the study should be used to analyse responses, but a single year of analysis during or at the end of the study would not be of value.  相似文献   

8.
Experiments were conducted on sandy loam soils of Tirupati campus of Andhra Pradesh Agricultural University for two rainy seaons of 1980 and 1981 to study the effect of split application of NPK fertilizers on Spanish bunch groundnut. The fertilizer doses were 40 N, 20 P and 40 K kg ha–1 in 1980 and 30 N, 10 P and 25 K kg ha–1 in 1981.In 1980, uptake of N (48 kg ha–1), P (7 kg ha–1) and K (37 kg ha–1) was maximum with the application of 10 N, 5 P and entire 40 K kg ha–1 as basal and 30 N and 15 P kg ha–1 at 30 days after sowing, leading to highest pod yield (0.76 t ha–1). In 1981, application of 20 N, 10 P and 25 K kg ha–1 as basal dose and 20 N kg ha–1 at 30 days after seeding resulted in highest uptake of N (114 kg ha–1), P (17 kg ha–1) and K (58 kg ha–1) and hence the pod yield (2.36 t ha–1).Differences in the uptake of NPK and pod yield in 1980 and 1981 was due to variation in total rainfall and its distribution during the crop period. Rainfall was equally distributed throughout the crop period in 1981, whereas there were two prolonged dry spells of more than 40 days in 1980.  相似文献   

9.
Maize is the primary food crop grown by farmers in the coastal savanna region of Togo and Benin on degraded (rhodic ferralsols), low in soil K-supplying capacity, and non-degraded (plinthic acrisols) soils. Agronomic trials were conducted during 1999–2002 in southern Togo on both soil types to investigate the impact of N and P fertilization and the introduction of a mucuna short fallow (MSF) on yield, indigenous N supply of the soil, N recovery fraction and internal efficiency of maize. In all plots, an annual basal dose of 100 kg K ha–1 was applied to the maize crop. Maize and mucuna crop residues were incorporated into the soil during land preparation. Treatment yields were primarily below 80% of CERES-MAIZE simulated weather-defined maize yield potentials, indicating that nutrients were more limiting than weather conditions. On degraded soil (DS), maize yields increased from 0.4 t ha–1 to 2.8 t ha–1 from 1999 to 2001, without N or P application, in the absence of MSF, with annual K application and incorporation of maize crop residues. Application of N and P mineral fertilizer resulted in yield gains of 1–1.5 t ha–1. With MSF, additional yield gains of between 0.5 and 1.0 t ha–1 were obtained at low N application rates. N supply of the soil increased from 10 to 42 kg ha–1 from 1999 to 2001 and to 58 kg N ha–1 with MSF. Application of P resulted in significant improvements in N recovery fraction, and greatest gains were obtained with MSF and P application. MSF did not significantly affect internal N efficiency, which averaged 45 kg grain (kg N uptake)–1. On non-degraded soils (NDS) and without N or P application, in the absence of MSF, maize yields were about 3 t ha–1 from 1999 to 2001, with N supply of the soil ranging from 55 to 110 kg N ha–1. Application of 40 kg P ha–1 alone resulted in significant maize yield gains of between 1.0 (1999) and 1.5 (2001) t ha–1. Inclusion of MSF did not significantly improve maize yields and even reduced N recovery fraction as determined in the third cropping year (2001). Results illustrate the importance of site-specific integrated soil fertility management recommendations for the southern regions of Togo and Benin that consider indigenous soil nutrient-supplying capacity and yield potential. On DS, the main nutrients limiting maize growth were N and probably K. On NDS, nutrients limiting growth were mainly N and P. Even on DS rapid gains in productivity can be obtained, with MSF serving as a means to allow farmers with limited financial means to restore the fertility of such soils. MSF cannot be recommended on relatively fertile NDS.  相似文献   

10.
The sustainability of agroforestry systems in Amazonia was assessed from their litter dynamics and decomposition. Litter fall and litter stocks were determined from July 1997 to March 1999 in four sites in central Amazonia: a primary rainforest, a 13-year-old secondary forest, and two sites of a polyculture forestry system which consisted of four planted tree species of commercial use amidst upcoming secondary growth. The average annual litter fall in the undisturbed primary rainforest (FLO) was 8.4 t ha–1 year–1, which is within the range of litter fall in other rainforests in the region. It was similar in one of the two polyculture sites (8.3 t ha–1 year–1), but lower in the secondary forest and in the second polyculture site. In the litter fall in secondary forest and agroforestry sites, the leaf portion was higher (76–82% of total litter fall) than in FLO, due to reduced fine matter and wood fall. Leaf litter fall variability was much lower in the plantation sites than in the forests, which is explained by the much more homogeneous stand structure of the plantations. The quality of the produced litter, measured as C/N ratio, differed significantly between the primary forest site and one polyculture and the secondary forest site. The cumulative input of nitrogen through litter fall was 144 kg ha–1 year–1 in FLO, and 91–112 kg ha–1 year–1 in the polycultures and the secondary forest. Litter fall was not correlated with soil parameters, but had a significant linear regression with canopy closure. For the primary rainforest, litter fall was also (inversely) correlated with monthly rainfall. Litter fall was higher in the first year (1997–1998; an El Niño period) than in 1998–1999. Litter stocks on the forest floor were highest in the secondary forest (24.7 t ha–1), and much lower in the polyculture sites (15.1–16.2 t ha–1) and the primary forest (12.0 t ha–1). There were no differences in the relative N content (C/N ratio) of the litter stocks between the sites, but the larger stocks led to higher absolute N contents in the litter layer in the secondary forest. From the monthly values of litter stocks (S) and litter fall (P), the decomposition coefficient k e=P/S was calculated, which was, on average, highest for the primary forest (0.059), followed by the polyculture systems (0.040–0.042), and by the secondary forest (0.024). Thus, due to low decomposition rates, the secondary forest site showed large litter accumulations in spite of a relatively low litter fall. In contrast, the primary forest showed high litter fall but low stocks, due to high decomposition rates. The decomposition coefficients of the polyculture systems ranged between the primary and the secondary forest. The reduced decomposition rates in the man-managed agroecosystems indicate quantitative and/or qualitative changes in the decomposer communities of these systems that lead to a higher build-up of litter stocks on the forest floor. However, the decomposer systems in the polyculture sites still were more functional than in the site of non-managed secondary growth. Thus, from a soil biological viewpoint, ecologically sustainable low-input agroforestry in Amazonia will benefit from the application of these polyculture systems.  相似文献   

11.
In a field experiment over three growing seasons, the potential benefits of planting berseem clover (Trifolium alexandrinum L) with Westerwold Italian ryegrass (Lolium multiflorum Lam.) were examined under irrigated continental Mediterranean conditions.Similar N rates (0, 30, 60, 90 and 120 kg N ha–1 cut–1) were applied to both pure Italian ryegrass stands and mixtures, each given three successive cuts. One previously unfertilized cut was performed in late winter. Species in the mixture were established at 50:50 seed ratio but the mean proportion of berseem clover was 14%. Mean winter survival of berseem was 87% but 88% of the plants had leaves damaged by the frost. Forage production varied with both N rate and cutting sequence in both the pure stand and the mixture but differences between the two types of swards were significant only at low levels of fertilizer N. Total DM production over the four cuts in plots with N applications of 0,90, 180, 270 and 360 kg N ha–1 a–1 were 7.14, 9.51, 11.66, 13.91 and 14.36 t DM ha–1 a–1 in pure stand, respectively. Corresponding values for the mixture were 8.80, 10.94, 12.90, 14.05 and 13.64 t DM ha–1 a–1. The mean response of Italian ryegrass in the range of 0–360 kg N ha–1 a–1 was 20 kg DM per kg N applied. The corresponding value for the mixture was 13 kg DM per kg N applied. At the berseem clover proportions reached in this work, N equivalence showed values of about 80 kg N ha–1 a–1. As rates of N increased from 0 to 120 kg N ha–1 cut–1, nitrogen concentration increased by 78%. In the applied range of N fertilizers, N03-N was not affected.
Résumé Dans un essai réalisé au cours de trois saisons agricoles, on a étudié le potentiel de 1'association du bersim avec le raygrass italien. Les cultures ont été emenées et irrigué dans des conditions continentales méditerranéennes. On a appliqué, aussi bien pour la culture pure du raygrass que pour l'association, une fertilisation azotée avec les doses suivantes (0, 30, 60, 90 et 120 kg N/ha/coupe) après chacune des trois coupes successives. Une autre coupe avant fertilisation a été faite à la fin de 1'hiver. Les proportions du bersim et du raygrass dans le mélange de graines étaient de 50:50. Cependant, dans la culture en association, les plantes du bersim n'étaient préentés qu'avec un 14 pourcent. 87% des plantes du bersim ont pu survivre en hiver, dont 88% avaient des feuilles endommagées par les gelées. La production d'herbe a été proportionnelle aux doses de fertilisation pour la culture pure et l'association. Néanmoins, différence entre les rendements de chacune de ces dernières était d'autant plus nette que les doses d'azote incorporées dans le sol étaient faibles. La production de la MS pour les quatre coupes dans les parcelles avec les applications de 0, 90, 180, 270 et 360 kg N ha–1 a–1 étaient de 7.14, 9.51, 11.66, 13.51, 14.36 tMS ha–1 a–1. Le rendement moyen du raygrass italien dans un intervalle de 0-360 kg N ha–1 a–1 a été de 20 kg MS par kg de N de fertilisation. Concernant le bersim, les valeurs équivalentes de N étaient de 1'ordre de 80 kg N ha–1 a–1. Au fur et à mesure que les doses de fertilisation azotée augmente de 0 à 120 kg ha–1 coupe, la concentration en azote augmente de 78%. Dans l'intervalle de la fertilisation azotée appliqué NO3 -N n'a pas été affectée.
  相似文献   

12.
The growth of weeds and their subsequent reduction of rice yield as affected by N source neem cake coated urea (NCU), dicyandiamide coated urea (DCU), rock phosphate coated urea (RPCU), urea supergranules (USG) and prilled urea (PU) was studied on a clay loam soil at Coimbatore, India. Experiments were conducted in northeast monsoon (NEM) 1981, summer 1982, and southwest monsoon (SWM) 1982 seasons.The crop was associated with eleven weed species, and the dominant weeds wereEchinochloa crus-galli, Cyperus difformis andMarsilea quadrifolia. The weed flora varied between seasons. Deep placement of USG reduced the dry weight of weeds in NEM and summer seasons at 60, 90 and 120 Kg N ha–1 whereas it increased the dry weight at 60 and 90 but not 120 Kg N ha–1 in SWM season. The dry weight of weeds decreased with increased N rates for all N sources during NEM and summer seasons. In SWM season, dry weight of weeds increased with increased N rates for all N sources except USG. The grain yield of rice was drastically reduced with the deep placement of USG at 60 but not 120 Kg N ha–1 in SWM season. The differential effect of the N sources between seasons was due to the change of the weed flora. Dominance ofE. crus-galli during SWM season had greater influence on weed dry weight and grain yield of rice.Nitrogen uptake by weeds was frequently greater in unfertilized plots, particularly in NEM and summer seasons. In SWM season, the apparent fertilizer N recovery by weeds was high for USG. It decreased from 53% for 60 Kg USG-N ha–1 to 4% for 120 Kg USG-N ha–1.Contribution from the part of Ph.D. work of the first author at Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamil Nadu, India.  相似文献   

13.
In an effort to establish an optimum combination of water and nitrogen for winter wheat a field investigation was carried out on a coarse loamy sand soil during 1984–85 and 1985–86 to assess effects of irrigation regime (IR) and N application on yield, water use and N uptake. The treatments compromised all combinations of three irrigation regimes (IR) based on ratios of irrigation water to cumulative pan evaporation viz.1.2 (I-1), 0.9 (I-2) and 0.6 (I-3) and four rates of N, viz. 0, 60, 120 and 180 kg ha–1. Grain yield increased with increase in frequency of irrigation. In spite of wide differences in weather during the two years, scheduling of irrigation at IW/CPE = 1.2 gave the highest wheat yield on the coarse-textured soil. During 1984–85, the rainless year, grain yield under I-1 was 20 and 32 per cent higher than I-2 and I-3, respectively. With increasing N rate the yield and water use efficiency increased progressively upto 180 kg N under I-1 and upto 120 kg N ha–1 under I-2 and I-3 regimes. During 1985–86, the wet year, grain yield response to IR was relatively low. Irrespective of IR, yield increased progressively upto 180 kg N ha–1 during the wet year. Irrigation water regimes and N application also influenced leaf area index and root growth of wheat. The yield of unfertilized wheat was relatively less affected by seasonal rainfall and IR.Both N uptake and grain yield of wheat were found to increase linearly with increase in water use. Water use efficiency was highest under I-1 regime at all levels of N in the dry season of 1984–85 and under I-3 regime in the wet season of 1985–86. Increase in N uptake with increasing N rates was significantly higher under I-1 than I-2 and I-3 regimes. The N use efficiency being maximum at 60 kg N ha–1, decreased at higher N levels irrespective of IR.  相似文献   

14.
Denitrification losses were measured using the acetylene inhibition technique adapted for a coring procedure. Two soils under a cut ryegrass sward were used. One soil was a freely-drained clay loam receiving under 900 mm rainfall annually, the other soil being a poorly-drained silty clay receiving over 1100 mm rainfall annually. Swards at each site received up to 300 kg N ha–1 yr–1 of calcium ammonium nitrate (CAN), urea or a new fertiliser mixture GRANUMS (30% ammonium nitrate, 30% urea, 10% ammonium sulphate, 30% dolomite). For both soils the rate of denitrification exceeded 0.1 kg N ha–1 day–1 only when the air-filled porosity of the soil was < 30% v/v and soil nitrate was > 2 mg N kg–1 in the top 10cm of the profile and when soil temperature at 10 cm was > 4°C. When the soils dried such that their air-filled porosity was > 30% v/v, denitrification rates decreased to < 0.08 kg N ha–1 day–1. Highest rates (up to 3.7 kg N ha–1 day–1) were observed on the clay soil following application of 94 kg N ha–1 CAN to soil near field capacity in early summer 1986. Losses from CAN were approximately 3 times those from urea for a given application. Denitrification losses from the GRANUMS treatment were, overall, intermediate between those from CAN and urea but the daily losses more closely resembled those from the CAN treatment. The impeded drainage on the clay soil, where soil moisture contents remained close to field capacity throughout the year, showed denitrification losses roughly 3 times those observed on the more freely drained clay-loam for any given treatment. Over a 12-month period, N losses arising from denitrification were 29.0 and 10.0 kg N ha–1 for plots receiving 300 kg N ha–1 CAN and urea, respectively, on the well drained clay-loam and 79.0 and 31.1 kg N ha–1 respectively, for identical plots on the poorly drained clay soil. Annual denitrification losses from control plots were < 1 kg N ha–1 on both soils.  相似文献   

15.
Leaching of nitrate from cropped rainfed terraces in the mid-hills of Nepal   总被引:1,自引:0,他引:1  
Intensification of crop production in the mid-hills of Nepal has led to concerns that nitrogen loss by leaching may increase. This study estimated the amount of N leached during two years from rainfed terraces (bari-land) at three locations in Nepal. Maize or upland rice grown in the monsoon season was given either no nutrient inputs or inputs via either nitrogen fertilizer or farmyard manure. Nitrate concentration in soil solution was measured regularly with porous ceramic cup samplers and drainage estimated from a simple soil water balance. Estimated losses of nitrogen by leaching ranged from 0 to 63.5 kg N ha–1 depending on location and the form of nitrogen applied. Losses from plots receiving no nutrient inputs were generally small (range: 0–35 kg N ha–1) and losses from plots where nitrogen was applied as manure (range: 2–41 kg N ha–1) were typically half those from plots with nitrogen applied as fertilizer. Losses during the post-monsoon crops of finger millet were small (typically <5% of total loss) although losses from the one site with blackgram were larger (about 13%). The highest concentrations of nitrate in solution were measured early in the season as the monsoon rains began and immediately following fertilizer applications. Leaching losses are likely to be minimised if manure is applied as a basal nutrient dressing followed by fertilizer nitrogen later in the season.  相似文献   

16.
Green manuring of rice with dhaincha (Sesbania aculeata) is widely practised under irrigated puddle-transplanted conditions. In flood-prone lowlands, the rice is established through direct seeding early in the season and flooding occurs after 1–2 months of crop growth following regular rains. The low yields are due to poor crop stands and difficulty in nitrogen management under higher depths of water. The effect of green manuring with dhaincha intercropped with direct-seeded rice vis-à-vis the conventional practice of incorporating pure dhaincha before transplanting was investigated under flood-prone lowland conditions (up to 50–80 cm water depth) at Cuttack, India. Treatment variables studied in different years (1992, 1994 and 1995) were: rice varieties of different plant heights, crop establishment through direct seeding and transplanting, varying length of periods before dhaincha incorporation, and urea N fertilizer levels. Dhaincha accumulated 80–86 kg N ha-1 in pure stand and 58–79 kg N ha-1 when intercropped with direct-seeded rice in alternate rows at 50 days of growth. The growth of rice improved after dhaincha was uprooted manually and buried in situ between the rice rows when water depth was 10–20 cm in the field. The panicle number was lower but the panicle weight was higher with dhaincha green manuring than with recommended level of 40 kg N ha-1 applied as urea. The grain yield was significantly higher with direct seeding than with transplanting due to high water levels (>60 cm) immediately after transplanting. Dhaincha manuring was at par with 40 kg N ha-1 as urea in increasing the yield of direct-seeded and transplanted crops. The highest yield of direct-seeded crop was obtained when 20 kg N ha-1 was applied at sowing and dhaincha was incorporated at 50 days of growth. The results indicate that green manuring of direct-seeded rice with intercropped dhaincha is beneficial for substituting urea fertilizer up to 40 kg N ha-1 and augmenting crop productivity under flood-prone lowland conditions.  相似文献   

17.
Integrated soil management with leguminous cover crops was studied at two sites in the northern Guinea savanna zone of northern Nigeria, Kaduna (190 day growing season) and Bauchi (150 days). One-year planted fallows of mucuna, lablab, and crotalaria were compared with natural grass fallow and cowpea controls. All treatments were followed by a maize test crop in the second year with 0, 30, or 60 kg N ha–1 as urea. Above ground legume residues were not incorporated into the soil and most residues were burned early in the dry season at the Kaduna site. Legume rotation increased soil total N, maize growth in greenhouse pots, and dry matter and N accumulation of maize. Response of maize grain yield to 30 kg N ha–1 as urea was highly significant at both sites and much greater than the response to legume rotation. The mean N fertilizer replacement value from legume rotation was 14 kg N ha–1 at Kaduna and 6 kg N ha–1 at Bauchi. W ith no N applied to the maize test crop, maize grain yield following legume fallow was 365 kg ha–1 higher than natural fallow at Bauchi and 235 kg ha–1 higher at Kaduna. The benefit of specific legume fallows to subsequent maize was mostly related to above ground N of the previous legume at Bauchi, where residues were protected from fire and grazing. At Kaduna, where fallow vegetation was burned, maize yield was related to estimated below ground N. The results show that legume rotation alone results in small maize yield increases in the dry savanna zone.  相似文献   

18.
Interactive effects of nitrogen (N) rates, seeding (S) rates and irrigation frequencies on grain yield and yield components of durum wheat were studied for four years under field conditions at Tulelake, California. Each year the experiment was conducted using a split-plot design with 4 irrigation frequencies as main plots and combinations of 5 N-rates (0 to 360 kg/ha) and 5 S-rates (50 to 250 kg/ha) as subplot treatments replicated 4 times. A quadratic response surface model (RSM) was used to study the effects of these treatments on grain yield and yield components (tillers/area, kernel number/spike, kernel weight/spike and 100-seed weight). The RSM was very effective for analysis and data reduction for estimating the optimum combinations of N and S for maximizing the grain yield and yield components. The N utilization and uptake efficiency increased with each irrigation treatment and peaked at irrigation treatment C. Both N and uptake utilization efficiency decreased with each increment of N-rate.In most cases, the effect of irrigation was independent of N and S. One irrigation at tillering increased grain yield and yield components significantly over only a preplant irrigation. The response of additional irrigations were comparatively small and significant only in some cases. Both N and S had significant effects on grain yield and yield components, however, the response of N was larger than that of S. With increasing N-rate, grain yield and tiller number increased with the expected peak beyond 360kg N ha–1 but the increments beyond 180 kg N ha–1 were of progressively smaller magnitude. The kernel number and kernel weight per spike also increased with N-rate giving a peak between 270 and 360 kg N ha–1. With increasing S grain yield and tiller number/area increased while kernel number and kernel weight per spike decreased progressively. It was impossible to maximize yield and yield components at a given combination of N, S, and irrigation. According to the model, grain yield and tiller number were maximized at the highest level of N and S, while kernel number and kernel weight/spike were maximized at the lowest S (50 kg ha–1) and about 314 kg N ha–1 under adequate water supply. On the basis of the findings of this study and output of the model, 180–360 kg N ha–1, 150–250 kg S ha–1 and two post-sowing irrigations (at tillering and at boot stage) in addition to a preplant irrigation was recommended for optimum yield. An additional irrigation might be required depending on the weather conditions during the grain filling period.  相似文献   

19.
Effects of deep application of urea on NO and N2O emissions from an Andisol   总被引:1,自引:0,他引:1  
A modeling study revealed that the depth of nitric oxide (NO) production in soil is crucial for its flux, while that of nitrous oxide (N2O) is not. To verify this result, laboratory experiments with soil columns classified as Andisol (Hydric Hapludand) were conducted, with changing the depth of urea application, at 0–0.1 or 0.1–0.2 m. All the NO concentration profiles in soil exhibited a sharp peak at each fertilized layer within 5 days of fertilizer application. NO concentration in soil decreased abruptly as the distance from the fertilized layer increased. These findings imply that NO is produced mainly within the fertilized layer, but does not diffuse widely in the soil columns, because of rapid NO uptake within the soil. As a result, the NO flux from soil columns fertilized at 0.1–0.2 m depth over the 48-day study period was reduced to almost the same rate as that of the unfertilized one. The total NO emissions from soil columns unfertilized and fertilized at 0–0.1 and 0.1–0.2 m depth were 0.02, 1.39 (± 0.05) and 0.05 (± 0.03) kg N ha–1, respectively, suggesting that NO emission derived from N fertilizer could be reduced to 2% by shifting the depth of fertilizer application by 0.1 m. On the other hand, soil N2O concentration profiles exhibited a gentler peak, because of the lower uptake by soil. N2O fluxes were affected more by the soil conditions, e.g. soil water content, than the distance between fertilized depth and soil surface. The total N2O emissions from soil columns unfertilized and fertilized at 0–0.1 and 0.1–0.2 m were 0.02, 0.16 (± 0.03) and 0.25 (± 0.04) kg N ha–1, respectively.  相似文献   

20.
The effect of repeated fertilization on soil properties, nutrient status of the stand and the biomass production of the above-ground components of the trees are examined in the study on the basis of material from three fertilization experiments. Two of the experiments were established in sapling stands, and the third in a pole-stage stand. The stands had received repeated doses of fertilizer totalling N 597–776 kg ha–1 and P 69–80 kg ha–1 over a 26 to 30-year study period in accordance with a factorial experimental design.Nitrogen fertilization increased the amount of organic matter in the humus layer of two of the experiments by 25–35%, and the amount of total nitrogen by about 50%. The C/N ratio of the humus layer in all three experiments decreased as a result of nitrogen fertilization by 11–18%. No decrease in soil pH was detected.At the end of the experimental period, i.e. 5–6 years after the most recent fertilization, the nitrogen concentration of the current needles on the nitrogen-fertilized plots was clearly lower than that of the older needle age classes. Fertilization did not have any marked effect on the concentrations of other macronutrients in the needles.Of the above-ground components, stemwood production was affected the most by nitrogen fertilization. The range of the relative growth response was 22–36%. The effect on branch biomass was 25% on the least fertile site, but there was no effect on the most fertile site. The effect of nitrogen fertilization on the needle biomass component was least, from –8 to 18%, owing to the 5 to 6-year time lag between the preceding fertilization and biomass sampling. A negative response was found on the least fertile site, where six years had elapsed since the most recent fertilization. However, on this site the proportion of over one-year-old needles was greater on the nitrogen-fertilized plots (24%) than on the others (19%). Phosphorus fertilization had only a slight effect on stemwood production.In general, nitrogen fertilization decreased the crown biomass per unit volume of stemwood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号