首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对具有吸能子地板的全复合材料机身结构进行了垂直向7.9m/s的抗坠毁数值模拟,得到平均加速度、速度及撞击载荷值等动态冲击参数,考虑采用不同的评价方法来评估其抗坠毁特性。并对全复合材料机身结构进行分块设计,考虑在冲击过程中起关键作用的底部结构中加入吸能泡沫,最后利用专业的瞬态动力学软件对有限元设计模型进行了冲击模拟,并与测试结果进行了比较,结果满足抗坠毁设计相应规范要求。计算得到的平均加速度不超过13g,其相对误差不大于11%,撞击载荷最大不超过6kN,坠毁平均负加速度持续时间不超过0.03s,结果较合理。利用本模型可以指导直升机的抗坠毁设计。  相似文献   

2.
Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV – Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics. Received 12 December 1999  相似文献   

3.
汽车结构的耐撞性及碰撞吸能优化是现代汽车工业重要的研究内容。耐撞性的优化涉及材料与结构的众多参数。传统的设计、碰撞仿真及试验往往只能在一定程度上改善结构的碰撞性能而无法达到限定条件下的最优状态。利用国际上近年来新发展起来的一种优化理论方法--响应表面法,结合传统的优化手段以及非线性有限元程序对薄壁构件的耐撞性问题进行了优化研究。耐撞性优化的结果表明,该方法具有较高的精确性和有效性。  相似文献   

4.
为设计具有良好耐撞性能的地铁列车吸能结构,将矩形吸能管的一组对称面引入锥度,并在内部嵌入多个隔板。建立该双锥内嵌隔板矩形管和传统矩形管的有限元模型,对两者耐撞性进行对比,通过准静态轴向压缩试验验证有限元分析的准确性。以双锥内嵌隔板矩形管三个部分的厚度为设计变量,进行试验设计并建立代理模型,为最大化比吸能和最小化峰值力,对双锥内嵌隔板矩形管进行多目标优化。结果表明,双锥内嵌隔板矩形管在准静态压缩下呈现稳定而规律的变形,耐撞性能优于传统矩形管;两个优化目标具有一定的互斥性,根据实际工程对各优化目标进行权重分配,能够于帕累托前沿中应用权函数实现最优设计方案的选择。  相似文献   

5.
《Composites》1990,21(4):297-304
Numerical crashworthiness simulation of metallic structures such as automotives is today feasible using specialized finite element techniques on modern supercomputers. The material models usually employed for these analyses are either linear elastic or of the elasto-plastic von Mises type. There is currently no equivalent general theory that can describe the fracturing and post-linear behaviour of fibre/matrix materials. A major manufacturing objective of the automotive industry is the use of lightweight fibre/matrix composites in secondary structural components such as the firewall, tunnel and floorpans; the cheapest and currently most promising of these materials being anisotropic short fibre sheet moulded (SMC) and dough moulded (DMC) compounds. These components play an important role in the crashworthiness performance of a vehicle and must therefore be adequately represented in a numerical simulation. This paper outlines a material damaging law suitable for anisotropic randomly orientated short fibre composites. A principal aim of this work is simplicity and computational efficiency such that the large scale crashworthiness analysis of structures remains feasible. For this reason a damage mechanics approach is used here to represent the initiation and growth of material microcracks that modify and reduce material stiffness. This damaging law is implemented and demonstrated using the thin shell element of the commercial crashworthiness code PAM-CRASH which is specifically designed for the large deformation analysis of dynamically loaded structures.  相似文献   

6.
综合运用有限元仿真、试验模态测试和模型修正技术,对一个由螺栓连接的三层框架结构进行了动力学特性分析和响应预测,并对其中涉及到的相关问题进行了讨论。首先,采用不同类型单元分别建立结构的实体有限元模型、板-梁有限元模型以及三自由度集中参数模型,并进行模态计算。然后,对实际结构进行模态测试,并将三类模型的计算结果与测试数据进行对比,分析不同类型单元所建立模型的异同以及由螺栓连接的复杂性、加工装配的误差和材料参数的不准确等不确定因素对建模及计算误差所造成的影响,从而确定合理的修正参数。接着,用模态测试数据对模型参数进行修正,使得修正后的模型能够准确反映实际结构的固有频率和振型。最后,将测试获取的阻尼参数加到修正后的模型上,进行冲击激励下的响应预测,并与实际结构的测试结果进行对比,取得了满意的结果。  相似文献   

7.
The structural crashworthiness design of vehicles has become an important research direction to ensure the safety of the occupants. To effectively improve the structural safety of a vehicle in a frontal crash, a system methodology is presented in this study. The surrogate model of Online support vector regression (Online-SVR) is adopted to approximate crashworthiness criteria and different kernel functions are selected to enhance the accuracy of the model. The Online-SVR model is demonstrated to have the advantages of solving highly nonlinear problems and saving training costs, and can effectively be applied for vehicle structural crashworthiness design. By combining the non-dominated sorting genetic algorithm II and Monte Carlo simulation, both deterministic optimization and reliability-based design optimization (RBDO) are conducted. The optimization solutions are further validated by finite element analysis, which shows the effectiveness of the RBDO solution in the structural crashworthiness design process. The results demonstrate the advantages of using RBDO, resulting in not only increased energy absorption and decreased structural weight from a baseline design, but also a significant improvement in the reliability of the design.  相似文献   

8.
Crash response of advanced high-strength steel tubes: Experiment and model   总被引:2,自引:0,他引:2  
The performance of non-hydroformed and hydroformed structural steel tubes in component-level crash testing was investigated using both experimental and analytical techniques. In particular, the focus was on high-strength steels that may have potential to enhance crashworthiness of automobiles. Monolithic tubes made from multiple materials and wall thicknesses were considered in this study. The following materials were used: conventional drawing quality (DDQ) steels; high-strength low alloy (HSLA-350) steels; and advanced high-strength steel (AHSS) materials comprising the dual phase alloys DP600 and DP780. The goal of this research was to study the interaction between the forming and crash response of these materials in order to evaluate their potential for use in vehicle design for crashworthiness. The tubes were hydroformed using two methods known as low- and high-pressure processes. Material characterization of all materials was carried out through quasi-static and high strain rate tensile tests in the range of 0.00333–1500 s−1, and rate sensitive constitutive models for all materials were developed. The nonlinear explicit dynamic finite element code LS-DYNA, in conjunction with the validated constitutive models, was used to simulate both the hydroforming processes and the crash tests performed on the tubes. The energy absorption characteristics of the different tubes were calculated and the results from the numerical analyses were compared against the experimental data. This comparison was performed in order to determine whether the interactions between forming and crush could be adequately predicted using finite element analysis. The effects of thickness changes, work hardening, and component geometry, which resulted from hydroforming, on the crash response were also investigated. A study of the significance of strain rate and the importance of performing detailed material characterization on the accuracy of the numerical analysis was performed. Also, a parametric study on the effect of transferring forming history data between simulations on the accuracy of the numerical analysis was performed, and the importance of carrying forward the histories between multiple forming simulations was demonstrated.  相似文献   

9.
在结构强度分析中,将刚度分布较为准确的静力学模型转换为动力学模型可以大大提高建模效率。提出了一种基于模态试验和优化算法的静、动力学模型转换方法。在调整静力学模型的刚度矩阵基础上,再按照质量、质心、惯矩、单元体积进行节点质量的预分配,最后根据模态试验识别出的模态参数优化节点质量的修正量,如此便可得到其动力学模型。以某飞机翼身组合结构模型的转换为例,证明了该方法的实用性。  相似文献   

10.
Composite energy-absorbing aircraft structures are being studied within a European Commission research programme (CRASURV – Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for modelling future composite primary structures. In this paper, a detailed analysis is presented of a generic module of a composite helicopter subfloor structure, subjected to crash loading. The analysis is performed with the explicit finite element code PAM-CRASH and is compared with the results of a drop test. It has been found that pre-test simulations with only coupon data as input are capable of providing a reasonable overall representation, but to closely match the behaviour of the test, a significant amount of post-test work is required. The calibration of the post-failure material properties proved to be more crucial than the behaviour up to initial failure. The representation of fabric materials was found to be inadequate and a new fabric material model is under development as a result. The importance of modelling frictional effects was highlighted, and a mesh density study showed the model to be robust over a range of mesh densities.  相似文献   

11.
Structural hierarchy has become a popular technique to improve the crashworthiness of engineering structures. A study is conducted to explore the interaction between hierarchical geometries and determine the optimum honeycomb configuration that improves crashworthiness. Nine distinct second-order vertex-based hierarchical honeycombs are constructed by iteratively replacing the vertices of a square-based honeycomb with squares, circles, and octagons. Validated finite element models are then established to investigate the out-of-plane crashworthiness performance. Subsequently, the effect of the hierarchical geometry combinations and cell length ratios on the crashworthiness performance of the nine honeycombs is studied. The study showed that the second-order hierarchical honeycomb exhibited superior crashworthiness performance under the same relative density compared to the regular and first-order hierarchical square honeycombs. The study determined that the circle is a suitable matching geometry in the first- and second-order hierarchies for improving the crashworthiness of a square-based honeycomb. Using Complex Proportional Assessment, the Square-Circle-Circle ranked as the optimum structure for crashworthiness application.  相似文献   

12.
长输管道悬索跨越结构静动力性能的有限元分析   总被引:2,自引:0,他引:2  
王金国  丁阳 《工程力学》2007,24(8):173-177
应用ANSYS有限元程序,建立长输管道悬索跨越工程原型和1∶8试验模型的有限元计算模型,对有限元计算模型进行静力、模态和地震反应的有限元分析。结果表明:静力计算和模态分析中,计算结果与试验结果吻合很好,2个有限元模型的计算结果能较好地满足模型设计相似比,试验模型能较好地反映原型结构的性态;地震反应分析和试验中,输入的最大横向和竖向地震反应加速度折合原型均超过0.4g,但模型构件未发生破损,结构体系保持稳定,表明悬索跨越结构具有抗御地震烈度9度而保持使用功能的能力,但有限元模型地震反应计算结果与试验实测值之间存在着一定差异,分析了造成差异的原因。  相似文献   

13.
The paper presents an experimental and a numerical investigation on precast, prestressed reinforced concrete (RC) and steel fibre reinforced concrete (SFRC) roof elements. The element investigated has a complex geometry, because it is characterized by a thin-walled open cross-section and a long span. In order to reduce the total weight of the traditional RC element and favour an industrialized production process, the structure can be made of fibre reinforced concrete. This composite presents a significant toughness after cracking that can substitute the diffused reinforcement made of common steel-welded meshes, conserving the longitudinal prestressed reinforcement. The mechanical characterization of SFRC material has found recently a shared design approach that starts with the identification of the uniaxial tension constitutive law obtained from a standardized bent notched specimen. Nevertheless, for defined casting procedures of the structure, like in prefabrication, the identification of the uniaxial tension constitutive law can be performed by a four point bending tests on suitable unnotched specimens, able to take into account the effective fibre orientation in the structure and the real nominal thickness of the critical portion of the element. The latter two different experimental test procedures (on notched or unnotched specimens) lead to significant differences in the tension softening response. For this reason SFRC tension softening relations, coming from the previously mentioned experimental tests, are analyzed in this paper in order to evaluate their effects on the structural response of this large-scale roof element. The results of the experimental tests on the roof element presented in this paper show that second-order effects drastically anticipated the achievement of the longitudinal bending moment resistance calculated following the beam theory and neglecting transverse equilibrium and in-plane cross section deformation. Two numerical models are proposed in this paper to evaluate second-order effects in the resistance assessment of the precast structure. The first one is based on a plane section approach (PSA), while the second one is based on a non-linear finite element analysis (NLFEA). Both second-order effect and uniaxial tension constitutive relationship roles are examined in relation to the global response of the structure up to failure. The final remarks, coming from a careful comparison between experimental and numerical results, highlight that the failure is mainly led by a structural behaviour, because second-order effects prevail on non-linear response of SFRC materials adopted.  相似文献   

14.
Dynamic response of the first fiber-reinforced polymer composite bridge built in the US was studied using experimental modal tests and validated finite element models. This slab bridge was manufactured with a longitudinal joint, in the form of a shear-key, and was connected in the field using epoxy resins. Long-term performance of such joints is critical for future applications of similar designs. At the same time, the shear-key details are not visible, once joined, and cannot be inspected using routine inspection procedures. Hence, experimental modal analysis was used to evaluate the integrity of the longitudinal joint. A finite element model validated with field test data was developed to further study the effect of the longitudinal joint degradation on vibration characteristics of the structure. The finite element analysis was also used to evaluate the modal-based techniques for future inspections. Results indicate that the longitudinal joint is performing as intended, and only high degradation of the joint can be detected using the measured vibration characteristics of the bridge.  相似文献   

15.
Compressibility of warp-knitted spacer fabrics is one of their important mechanical properties with regard to many special applications such as body protection, cushion and mattresses. Due to specific structural features of the fabric and a non-linear mechanical behavior of monofilaments, the compression properties of this kind of fabrics are very complicated. Although several studies have been performed to investigate their compression behavior, its mechanism has not well been understood yet. This work is concerned with a study of compression mechanism of a selected warp-knitted spacer fabric with a given sandwich structure. Both experimental and numerical methods are used to study the effect of the material's structure on the overall compression mechanism. Compression tests are conducted to obtain force-displacement relationships of the fabric. A micro-computed tomography system is used to analyze specimens under different levels of compression displacement to investigate the change in material's structure during the compression process. At the same time, finite element models are developed separately to simulate the initial geometric structure and the compression behavior of the fabric. Three finite element models based on beam elements are firstly developed to simulate the effect of manufacturing process on shapes of monofilaments within the fabric and to determine their morphologies, which are used to assemble a geometry part of the finite element model of the overall fabric. Then the finite-element model is developed using beam and shell elements to describe the compression behavior of the fabric by introducing the effect of its complex microstructure and real non-linear mechanical properties of the monofilaments. A comparison of the obtained experimental and CT data, and results of simulation is carried out, demonstrating a good agreement. With this study, a compression mechanism of the warp-knitted spacer fabric can be better understood.  相似文献   

16.
钢框架梁柱端板连接的非线性有限元分析   总被引:4,自引:0,他引:4  
运用通用有限元软件ANSYS建立三维有限元模型,对8个不同形式、不同构造的钢框架梁柱端板连接进行了非线性有限元分析(FEA),并与相应的试验结果进行了全面对比分析。比较结果表明:该文的有限元模型不但能够准确地分析计算各种类型和不同构造的钢框架梁柱端板连接节点的整体受力特性,包括承载力、弯矩-转角(M-φ)曲线、极限变形状态等,还能有效地分析计算节点及其组件的细部受力特性,包括高强度螺栓的预拉力,端板和柱翼缘之间的接触状态,以及节点域、端板、螺栓、端板加劲肋、节点域加劲肋等组件的受力状态,为进一步运用该模型对各种形式和构造的端板连接进行全面的有限元参数分析计算提供了正确性依据。同时,有限元分析还给出了螺栓预拉力引起的接触面预压力分布、荷载作用下接触面的摩擦力分布以及节点的主应力流分布等对于全面和深入理解端板连接节点受力特性非常有意义但是又难于通过试验进行测量的结果。  相似文献   

17.
Different formulations based on multibody dynamics are shown to be suitable for the development of a methodology for the impact simulation and crashworthiness design of railway vehicles. The proposed design methodology comprises different computer-aided tools of increasing complexity and accuracy which can be used with greater advantage and efficiency in the different design stages of railway stock. In general, the crashworthiness design methods and associated multibody dynamic tools which are presented in this paper require information to be obtained from numerical or experimental crush tests of specific structural components, subassemblies and critical energy absorption devices normally located in car extremities. This hybrid feature lends to the present design process various efficiency gains as a result of a better understanding of the crash and different collapse mechanisms and ease of use. To access the merits of the present methodologies some new designs are discussed and the application of the proposed numerical tools is illustrated for different structural configurations of car extremities. A formulation for the sensitivity analysis and optimization of planar constrained mechanical systems is also presented. An example of crashworthiness design of an end underframe model of a railway car is solved to demonstrate the use of the methodology. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
19.
结构固有频率的灵敏度分析及修改技术   总被引:1,自引:0,他引:1  
本文给出了在结构上进行点加质量和两点间加杆的固有频率灵敏度分析和结构修改的方法。对一空间框架结构进行的有限元分析和实验结果表明,该方法给出的灵敏位置确切,误差小,使用方便,实用性好  相似文献   

20.
轻量化是实现汽车产业向安全、节能、环保发展的一个重要途径。Al/CFRP(carbon fiber reinforced plastic,碳纤维增强复合材料)混合材料能够在提升轻量化效果的同时兼顾材料成本和结构耐撞性能。为探索方形截面Al/CFRP混合薄壁结构的最佳组合方式,首先,制备了Al方管、CFRP方管和Al/CFRP混合方管,并开展准静态压溃实验。然后,建立能够精确模拟Al/CFRP混合方管压溃响应的有限元模型。最后,将试验设计方法、代理模型技术、多目标优化算法和蒙特卡罗模拟技术相结合,对Al/CFRP混合方管分别进行多目标确定性与可靠性优化设计,并对效果较好的可靠性优化解进行仿真验证。准静态压溃实验结果表明,Al/CFRP混合方管具有优异的耐撞性能;优化结果表明,可靠性优化解的约束可靠度相比于确定性优化解提高了10.96%,大大降低了失效概率,具有更强的实用性。研究结果有望对Al/CFRP混合薄壁吸能构件的优化设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号