首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
结合国内外研究现状,主要分析了纳米粒子射流微量润滑的冷却性能,实验对比了浇注式磨削、干磨削、MQL磨削和纳米粒子射流MQL磨削的工件表面温度,结果显示纳米粒子射流MQL具有较好的冷却效果,其应用前景广阔.  相似文献   

2.
主要对纳米粒子射流微量润滑磨削性能进行实验评价.采用K-P36数控平面磨床,选取干磨削、浇注式磨削、微量润滑磨削和纳米粒子射流微量润滑磨削4种工况条件,分别从磨削力、磨削G比率、磨削温度和表面粗糙度方面进行磨削性能评价,结果表明:纳米粒子射流微量润滑磨削改善了换热能力,与干磨削相比降低了将近150℃,干磨削得到的工件表面粗糙度Ra值为1.2μm,纳米粒子射流微量润滑磨削Ra值为0.58 μm,工件表面质量显著提高;在纳米粒子的润滑作用下,得到的磨削力较稳定,且比干磨削和微量润滑磨削得到的磨削力减小15%以上;纳米粒子射流微量润滑磨削G比率在4种工况中最高,值为33,干磨削仅为12,比其他工况增大约一倍,砂轮的磨损明显减小,延长砂轮使用寿命.  相似文献   

3.
随着人们环保意识的增强,微量润滑技术已经开始应用于磨削加工中,但是它的冷却效果有限,不能满足高磨削区温度强化换热的要求。而纳米粒子射流微量润滑新工艺的提出,可以有效地解决磨削区换热问题,同时又增强了砂轮与工件界面的润滑特性。针对在纳米粒子射流微量润滑磨削条件下磨削工件表面粗糙度预测,提出一种用于测量砂轮表面形貌的装置以及对磨削工件表面形貌进行模拟仿真的方法。并以两种工件材料为研究对象进行表面形貌数值模拟和实验验证,结果表明该种预测方法能够较准确地对磨削加工工件表面粗糙度进行预测,对于磨削参数的选择具有一定的指导意义。  相似文献   

4.
基于恒定热流密度的温度场理论计算值与实际温度值的误差较大,是当前磨削温度场理论研究的瓶颈。建立了不同冷却条件下的对流换热系数及材料内部的热传导模型,通过实时采集动态磨削力,利用高次高斯函数拟合建立了动态热流密度模型,并以此为基础建立了神经外科骨磨削温度场预测新模型。在干式磨削、喷雾式及纳米粒子射流喷雾式冷却条件下对骨磨削温度场进行了数值分析,并采用与人体颅骨力学性能最相近的新鲜牛股骨密质骨,采用羟基磷灰石纳米粒子及生理盐水进行了试验验证。结果表明,与试验测得温度值相比,采用基于恒定热流密度的温度场模型计算的温度值误差为18.8%,而采用新模型计算的温度值误差为6.6%,理论分析与试验结果吻合,即骨磨削温度场预测新模型更符合实际工况。  相似文献   

5.
为克服普通纳米流体微量润滑在磨削区换热能力不足的技术瓶颈,提出了低温风冷+纳米流体微量润滑的新工艺,并建立了温度场有限差分模型.对低温风冷+纳米流体微量润滑、低温风冷、纳米流体微量润滑三种冷却方式下的磨削温度场进行了数值仿真,结果表明低温风冷+纳米流体微量润滑的换热能力最强,低温风冷次之,纳米流体微量润滑最弱.在三种不...  相似文献   

6.
温度过高是目前磨削加工硬质合金的技术瓶颈。相比传统的干磨削工况,纳米流体微量润滑(NMQL)的冷却润滑方式是解决磨削热损伤的有效措施。为了验证纳米流体微量润滑工况下磨削硬质合金的可行性,建立了硬质合金的传热模型,并在此基础上对硬质合金的磨削温度场进行了数值仿真研究。对硬质合金(YG8)进行了不同工况下的表面磨削试验。结果表明,以干磨削工况下的磨削温度(227.2℃),微量润滑(MQL)工况和纳米流体微量润滑工况下磨削区温度分别降低了20.42%和39.48%。数值仿真温度与实验测量温度的误差为6.3%。从宏观参数(比磨削力、磨削温度)和微观参数(砂轮表面形貌)出发,研究了不同工况对砂轮磨损的影响。实验结果,进一步证明纳米流体微量润滑适用于硬质合金的磨削加工。  相似文献   

7.
温度过高是目前临床神经外科骨磨削的技术瓶颈,纳米粒子射流喷雾式冷却(nanoparticle jet mist cooling,NJMC)是解决磨削热损伤的有效措施。建立最大未变形切屑厚度模型及热流密度模型,采用数理统计的方法建立NJMC条件下的对流换热系数模型,并进行喷雾式和NJMC条件下的骨微磨削温度场的数值仿真研究。结果表明:骨表面温度随纳米粒子体积分数的增大而减小。利用与人骨力学性能最相近的新鲜牛股骨密质骨进行微磨削试验,结果显示,以喷雾式冷却(32.7℃)作为对比试验,采用纳米粒子体积分数0.5%、1%、1.5%、2%、2.5%的纳米流体测得的表面温度分别降低了14.1%、17.1%、19.6%、22.9%、33.3%,验证了骨表面温度随纳米粒子体积分数的增大而减小的规律。理论分析与试验结果高度吻合,验证了理论建模的正确性。将机械加工技术用于医疗康复,旨在为降低神经外科临床骨磨削温度提供一种有效方法。  相似文献   

8.
运用有限元法分析推导出微量润滑磨削温度场的数学模型,并通过ANSYS软件对磨削温度场进行了仿真,得出了微量润滑磨削温度场的分布.与实验值相比较,有限元法分析结果具有一定的精度,为深入研究微量润滑磨削温度提供了一条有效途径.  相似文献   

9.
低温纳米粒子微量润滑(Nano-CMQL)是将低温冷风技术与纳米粒子润滑油两者有效结合起来的一种高效绿色新型磨削加工润滑方法。采用60目陶瓷结合剂的氧化铝砂轮对GCr15淬硬轴承钢进行磨削试验,比较了常温干式、浇注式、低温冷风微量润滑(CMQL)以及Nano-CMQL四种工况在不同磨削参数下的法向磨削力、比磨削能、磨削温度、工件表面轮廓及粗糙度,结果表明,在基础磨削液中加入粒径为40 nm的MoS2固体颗粒制备出的Nano-CMQL磨削液能够有效地减小磨削加工过程中的法向磨削力并降低磨削温度,尤其在高速、大磨深的磨削参数下,其磨削加工性能更加优良。  相似文献   

10.
通过在微量润滑油中添加具有一定质量分数的纳米粒子,可改善其换热能力,同时提高加工过程中的润滑效果.通过磨削实验的方法,验证在平面磨削加工中纳米粒子的作用,结果显示添加纳米粒子的微量润滑磨削加工磨削力、摩擦系数和比磨削能较其他的润滑形式都有明显的减小,而G比率显著的提高.这都归功于纳米粒子在砂轮/工件界面生成具有高的减摩抗磨特性的摩擦油膜所致.  相似文献   

11.
在砂轮磨削过程中,磨削热影响工件表面完整性,而磨粒排布是影响磨削温度场的重要因素之一。针对磨粒叶序排布的砂轮,采用有限元法对磨削温度场进行了计算模拟分析,获得了叶序系数对工件磨削温度场的影响规律。研究结果表明,随着叶序排布系数的增大,被磨工件的表面温度和温度梯度减低。  相似文献   

12.
磨削淬硬温度场的数值模拟   总被引:1,自引:0,他引:1  
根据磨削比能、传热学等理论建立了磨削淬硬温度场的有限元模型,借助有限元软件Ansys对40Cr钢磨削温度场及工件的冷却速度进行了研究,得出了工件磨削温度场。最后通过不同工艺参数下的工艺试验与Ansys计算值进行了对比。结果表明,使用Ansys和试验值是吻合的,说明使用有限元方法模拟工件表面温度场是可靠和可行的。  相似文献   

13.
钛合金磨削过程中工件表面热损伤已成为亟需解决的技术难题。微量润滑技术应用于钛合金磨削是实现可持续制造的发展方向,但存在热耗散和润滑减摩能力不足的技术缺陷。利用多能场辅助加工是解决以上技术难题的必然选择,低温冷风取代常温空气携带微量润滑剂,可显著提高磨削区液膜换热和润滑性能。但润滑剂物理特性演变规律及磨削区液膜换热机理等科学问题尚需揭示。基于此,研究了润滑剂低温物理特性演变规律,建立了冷风温度与润滑剂物理参数的量化映射关系。分析了低温冷风微量润滑砂轮工件界面流动液膜换热规律,建立了磨削区流动液膜换热量理论模型。进一步,建立了不同冷风条件下润滑剂对流换热系数模型。进行了流动液膜对流换热系数和低温冷风微量润滑磨削钛合金换热性能验证实验,结果显示,对流换热系数理论值与测量值吻合,冷风温度为-10℃时,误差为8.5%;工件表面温度实验值和理论值变化趋势吻合,磨削深度为30μm、冷风温度为-40℃时,误差为7.7%。研究结果为低温冷风微量润滑磨削钛合金提高工件表面完整性提供技术支持。  相似文献   

14.
王涛  陈国定  张朝阳 《中国机械工程》2014,25(21):2901-2906
指出了确定磨削能传入工件比例对研究GH4169合金磨削机理的必要性,分析了已有理论计算公式确定磨削GH4169合金过程中磨削能传入工件比例的局限性。设计和实施了试验与有限元分析相结合的方法,对单晶刚玉砂轮磨削GH4169合金过程中磨削能传入工件的比例进行了确定,并进一步对该比例与磨削工艺参数之间的关系进行了研究,拟合了关系方程。结果表明,在试验工艺条件下,磨削能传入工件比例在25%~62%之间,且该比例与工艺参数之间的关系可用指数函数形式的方程描述。  相似文献   

15.
采用人工热电偶法,通过普通磨削和超声振动磨削对比实验,对陶瓷材料ZrO2平面磨削的温度场进行了实验研究。并对磨削参数与磨削温度的关系,进行了理论分析及实验验证。结论表明:距磨削表面越远,其磨削温度的峰值越远离热源;增大磨削深度、提高磨削速度和工作台进给速度都会使工件表面温度升高。正交试验表明,磨削深度对温度场的影响较大。普通磨削时工件表层的温度较高,易发生磨削烧伤,采用超声复合磨削能有效降低工件表层温度。  相似文献   

16.
结合国内外对混合纳米流体微量润滑磨削的研究现状,研究二硫化钼和碳纳米管混合纳米流体微量润滑磨削镍基合金的工件表面质量。以工件表面粗糙度Ra值、表面轮廓曲线的自相关分析和工件表面微观形貌,作为表面质量表征参数。试验结果表明:纳米流体微量润滑由于纳米粒子高的强化换热能力从而避免了工件烧伤;混合纳米流体由于起到了"物理协同作用",较单一纳米流体得到了最低的表面粗糙度Ra值(0.311μm)和磨削温度峰值(52.8℃);随纳米流体质量分数的增加,表面粗糙度Ra值呈现上升趋势,这是由于质量分数的增加改变了微量润滑雾滴与工件的接触角,从而改变了浸润面积;而摩擦因数和磨削温度峰值在6%取得最低值后呈上升趋势,这是由于纳米粒子的团聚破坏了纳米流体性能。通过工件表面轮廓曲线的自相关分析进一步验证,纳米粒子在磨削区起到"润滑作用"和"微加工"作用,从而提高了加工精度。因此,综合磨削性能、表面粗糙度和自相关分析,选择混合纳米流体质量分数6%为纳米流体的优选质量分数。  相似文献   

17.
黄辉  徐西鹏 《润滑与密封》2003,(6):15-17,21
对垂直轴磨削花岗石和平面磨削花岗石加工过程中磨削弧区的温度场进行了理论解析,并采用铁-康铜热电偶测量了磨削弧区温度。通过将实际测量的温度结果与理论解析结果进行拟合得出了传入工件的能量比例。结果表明,垂直轴干磨削花岗石过程中磨削弧区内的花岗石表面的平均温度不超过100℃。工具与工件接触界面中约5l%的热量传入工件,其它的热量传到了树脂结合剂砂轮。在平面磨削花岗石的过程中,磨削弧区温度不超过120℃,工具与工件接触界面中约有3l%的热量传到工件,其它的热量传到了树脂砂轮。本文的研究结果对减小金刚石工具消耗,提高加工效率和石材表面质量有实际指导意义。  相似文献   

18.
开槽砂轮缓进给深切磨削时工件表层温度场解析   总被引:2,自引:1,他引:2  
采用热源法推导出开槽砂轮缓进给深切磨削时磨削弧区工件表层温度分布的理论解析式,并利用理论计算公式结合磨削实验完成了施加水射流冲击条件下工件表层温度场的推演计算,计算结果与实验结果基本吻合,证实了开槽砂轮辅以弧区定向高压水射流冲击强化换热的确具有良好的冷却效果。  相似文献   

19.
磨削接触区材料去除厚度是不一致的,同时,在微量润滑过程中,雾滴之间的运动特征存在差异且易受其他因素的影响,致使整个接触区的磨削温度分布呈现出非线性,换热机理也异常复杂。从雾化机理出发,对影响换热效果的两个关键因素--雾滴直径和雾滴速度进行了分析。依据雾滴在不同壁温处表现出的不同换热特性,将磨削区划分为无沸腾换热、核态沸腾换热、过渡沸腾换热和稳定膜态沸腾换热四个不同的换热区域,建立了微量润滑磨削区的换热系数数学模型。在此基础上,运用有限元技术对微量润滑磨削表面的温度场进行了仿真分析,采用单级热电偶技术测量了磨削温度,发现磨削区仿真温度值与实验测量值吻合较好,表明通过该理论获得的微量润滑磨削表面换热系数是可信的。  相似文献   

20.
传统的磨削加工大量采用磨削液浇注法降低加工区温度,磨削液的大量使用给环境和操作者健康带来了很大危害,而且增加了磨削液排放回收的成本.本文分析了绿色磨削加工技术,如干磨削技术、微量润滑、液氮冷却、低温气体冷却、高压射流冷却、内冷却和固体润滑冷却技术在机械制造中的应用及其技术特征.绿色磨削加工技术将逐渐取代传统的浇注供液方...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号