首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the 5' --> 3' exonuclease activity of Bacillus caldotenax DNA polymerase by site-directed mutagenesis. Among seven mutants constructed, two mutant DNA polymerases with an amino acid substitution of Gly184 --> Asp or Gly192 --> Asp were confirmed to be deficient in this exonuclease. The two positions corresponded to those of the Escherichia coli DNA polymerase I mutants defective in 5' --> 3' exonuclease, polA480ex and polA214. These results provide experimental support for the proposed amino acid sequence essential for the 5' --> 3' exonuclease activity associated with eubacterial polymerase I-like DNA polymerases (family A), including E.coli and Thermus aquaticus.  相似文献   

2.
Phage T5 exonuclease is a 5'-->3'exodeoxyribonuclease that also exhibits endonucleolytic activity on flap structures (branched duplex DNA containing a free single-stranded 5'-end). Oligonucleotides were used to construct duplexes with either blunt ends, 5'-overhangs, 3'-overhangs, a flap or a forked end (pseudo-Y). The binding of T5 exonuclease to various structures was investigated using native electrophoretic mobility shift assays (EMSA) in the absence of the essential divalent metal cofactor. Binding of T5 exonuclease to either blunt-ended duplexes or single-stranded oligonucleotides could not be detected by EMSA. However, duplexes with 5'-overhangs, flaps and pseudo-Y structures showed decreased mobility with added T5 exonuclease. On binding to DNA the wild-type enzyme was rendered partially resistant to proteolysis, yielding a biologically active 31.5 kDa fragment. However, the protein-DNA complex remained susceptible to inactivation by p-hydroxymercuribenzoate (PHMB, a cysteine-specific modifying agent), suggesting that neither cysteine is intimately associated with substrate binding. Replacement of both cysteine residues of the molecule with serine did not greatly alter the catalytic or binding characteristics of the protein but did render it highly resistant to inhibition by PHMB.  相似文献   

3.
A new species of DNA polymerase has been purified more than 10 000-fold from the cytoplasm of erythroid hyperplastic bone marrow. This DNA polymerase, in contrast to previously described eukaryotic DNA polymerases, is associated with a very active 3' to 5' exonuclease activity. Similar to the 3' to 5' exonuclease activity associated with prokaryotic DNA polymerases, this enzyme catalyzes the removal of 3'-terminal nucleotides from DNA, as well as a template-dependent conversion of deoxyribonucleoside triphosphates to monophosphates. The exonuclease activity is not separable from the DNA polymerase activity by chromatography on DEAE-Sephadex or hydroxylapatite, and upon sucrose density gradient centrifugation the two activities cosediment at 7 S or at 11 S depending on the ionic strength. Both exonuclease and polymerase activities have identical rates of heat inactivation and both are equally sensitive to hemin and Rifamycin AF/013, inhibitors of DNA synthesis that act by binding to DNA polymerase and causing its dissociation from its template/primer. These results are consistent with the coexistence of two enzyme activities in a single protein.  相似文献   

4.
The epsilon subunit of Escherichia coli DNA polymerase III holoenzyme, the enzyme primarily responsible for the duplication of the bacterial chromosome, is a 3'-->5' exonuclease that functions as a proofreader for polymerase errors. In addition, it plays an important structural role within the pol III core. To gain further insight into how epsilon performs these joint structural and catalytic functions, we have investigated a set of 20 newly isolated dnaQ mutator mutants. The mutator effects ranged from strong (700-8000-fold enhancement) to moderate (6-20-fold enhancement), reflecting the range of proofreading deficiencies. Complementation assays revealed most mutators to be partially or fully dominant, suggesting that they carried an exonucleolytic defect but retained binding to the pol III core subunits. One allele, containing a stop codon 3 amino acids from the C-terminal end of the protein, was fully recessive. Sequence analysis of the mutants revealed mutations in the Exo I, Exo II and recently proposed Exo IIIepsilon motifs, as well as in the intervening regions. Together, the data support the functional significance of the proposed motifs, presumably in catalysis, and suggest that the C-terminus of straightepsilon may be specifically involved in binding to the alpha (polymerase) subunit.  相似文献   

5.
The cosmetic injection of exogenous lipids and more recently of polydimethyl siloxane (injectable silicone) into the scrotum has been described since 1899. Sclerosing lipogranuloma and paraffinoma are terms applied to a complication of this practice in which the injected oils or silicone elicit a marked granulomatous reaction with prominent surrounding fibrosis. Although this complication has been described as a localized process occurring mainly in the scrotal area and regional lymph nodes, few studies have documented systemic manifestations. In this report we describe the autopsy findings of a 48-year-old man who had scrotal and systemic lipogranulomas from repeated self-administered injection of mineral oil. In addition, severe acute pulmonary edema resulted in sudden unexpected death. To our knowledge, this fatal complication of exogenous lipogranuloma has not been previously reported.  相似文献   

6.
Mitochondrial DNA (mtDNA) is replicated by DNA polymerase gamma by a strand displacement mechanism involving mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB stimulates the overall rate of DNA synthesis on singly-primed M13 DNA mainly by stimulating the processivity of DNA synthesis rather than by stimulating primer recognition. We used electrophoretic mobility shift methods to study the effects of mtSSB on primer-template recognition by DNA pol gamma. Preliminary experiments showed that single mtSSB tetramers bind tightly to oligo(dT) single strands containing 32 to 48 residues. An oligonucleotide primer-template was designed with an 18-mer primer annealed to the 3'-portion of a 71-mer template containing 40 dT residues at its 5'-end as a binding site for mtSSB. DNA pol gamma bound to this primer-template either in the absence or presence of mtSSB in complexes that remained intact and enzymatically active following native gel electrophoresis. Association of mtSSB with the 5'-dT40-tail in the 18:71-mer primer-template reduced the binding of DNA polymerase gamma and the efficiency of primer extension. Binding of mtSSB to single-stranded DNA was also observed to block the action of the 3'-->5' exonuclease of DNA polymerase gamma. The size of fragments protected from 3'-->5' exonuclease trimming increases with increasing ionic strength in a manner consistent with the known salt dependence of the binding site size of Escherichia coli SSB.  相似文献   

7.
Werner syndrome is an inherited disease characterized by premature aging, genetic instability and a high incidence of cancer. The wild type Werner syndrome protein (WRN) has been demonstrated to exhibit DNA helicase activity in vitro. Here we report further biochemical characterization of the WRN helicase. The enzyme unwinds double-stranded DNA, translocating 3'-->5' on the enzyme-bound strand. Hydrolysis of dATP or ATP, and to a lesser extent hydrolysis of dCTP or CTP, supports WRN-catalyzed strand-displacement. K m values for ATP and dATP are 51 and 119 microM, respectively, and 2.1 and 3.9 mM for CTP and dCTP, respectively. Strand-displacement activity of WRN is stimulated by single-stranded DNA-binding proteins (SSBs). Among the SSBs from Escherichia coli, bacteriophage T4 and human, stimulation by human SSB (human replication protein A, hRPA) is the most extensive and occurs with a stoichiometry which suggests direct interaction with WRN. A deficit in the interaction of WRN with hRPA may be associated with deletion mutations that occur at elevated frequency in Werner syndrome cells.  相似文献   

8.
Histone RNA 3' processing in vitro produces one or more 5' cleavage products corresponding to the mature histone mRNA 3' end, and a group of 3' cleavage products whose 5' ends are mostly located several nucleotides downstream of the mRNA 3' end. The formation of these 3' products is coupled to the formation of 5' products and dependent on the U7 snRNP and a heat-labile processing factor. These short 3' products therefore are a true and general feature of the processing reaction. Identical 3' products are also formed from a model RNA containing all spacer nucleotides downstream of the mature mRNA 3' end, but no sequences from the mature mRNA. Again, this reaction is dependent on both the U7 snRNP and a heat-labile factor. Unlike the processing with a full-length histone pre-mRNA, this reaction produces only 3' but no 5' fragments. In addition, product formation is inhibited by addition of cap structures at the model RNA 5' end, indicating that product formation occurs by 5'-3' exonucleolytic degradation. This degradation of a model 3' product by a 5'-3' exonuclease suggests a mechanism for the release of the U7 snRNP after processing by shortening the cut-off histone spacer sequences base paired to U7 RNA.  相似文献   

9.
Oligoribonuclease, a 3'-to-5' exoribonuclease specific for small oligoribonucleotides, was purified to homogeneity from extracts of Escherichia coli. The purified protein is an alpha2 dimer of 40 kDa. NH2-terminal sequence analysis of the protein identified the gene encoding oligoribonuclease as yjeR (o204a), a previously reported open reading frame located at 94 min on the E. coli chromosome. However, as a consequence of the sequence information, the translation start site of this open reading frame has been revised. Cloning of yjeR led to overexpression of oligoribonuclease activity, and interruption of the cloned gene with a kanamycin resistance cassette eliminated the overexpression. On the basis of these data, we propose that yjeR be renamed orn. Orthologs of oligoribonuclease are present in a wide range of organisms, extending up to humans.  相似文献   

10.
Some 1-aryl-4-[(5-methoxy-1,2,3, 4-tetrahydronaphthalen-1-yl)-n-propyl]piperazines and their alkylamino and alkylamido analogues, previously studied as 5-HT1A ligands, were prepared in enantiomerically pure form, and their absolute configuration was determined by chemical correlation or by chiroptical properties. They were evaluated for in vitro 5-HT1A, D2, and alpha1 receptor affinity by radioligand binding assays, to study the influence of the chiral carbon atom of the tetrahydronaphthalene nucleus on the 5-HT1A affinity and selectivity. Results indicated that, as regarding the 5-HT1A receptor affinity, there was no difference in affinity between (-)- and (+)-enantiomers as well as the racemate of each compound. The stereochemistry, instead, influenced the selectivity: all (-)-enantiomers displayed affinity values higher than those of (+)-isomers at D2 receptors, and conversely, all (+)-enantiomers displayed affinity values higher than those of (-)-isomers at alpha1 receptors. As a result of this trend, it is not possible to predict the isomer with a better selectivity profile. However, compounds (S)-(+)-2, (S)-(+)-4, and (R)-(+)-6 displayed high affinity for the 5-HT1A receptor (IC50 values ranging between 7.0 and 2.3 nM) and good selectivity (>/=250-fold) versus both D2 and alpha1 receptors. Furthermore, compounds (S)-(+)-4 and (R)-(-)-4 were submitted to the [35S]GTPgammaS binding assay for a preliminary evaluation of their intrinsic activity on the 5-HT1A receptor.  相似文献   

11.
Bacteriophage T5 5'-->3' exonuclease is a member of a family of sequence related 5'-nucleases which play an essential role in DNA replication. The 5'-nucleases have both exonucleolytic and structure-specific endo-nucleolytic DNA cleavage activity and are conserved in organisms as diverse as bacteriophage and mammals. Here, we report the development of a structure-specific single cleavage assay for this enzyme which uses a 5'-overhanging hairpin substrate. The products of DNA hydrolysis are characterised by mass spectrometry. The steady-state catalytic parameters of the enzyme are reported and it is concluded that T5 5'-->3' exonuclease accelerates the cleavage of a specific phosphodiester bond by a factor of at least 10(15). The catalytic assay has been extended to three mutants of T5 5'-->3' exonuclease, K83A, K196A and K215A. Mutation of any of these three lysine residues to alanine is detrimental to catalytic efficiency. All three lysines contribute to ground state binding of the substrate. In addition, K83 plays a significant role in the chemical reaction catalysed by this enzyme. Possible roles for mutated lysine residues are discussed.  相似文献   

12.
Translesion replication (TR) past a cyclobutane pyrimidine dimer in Escherichia coli normally requires the UmuD'2C complex, RecA protein, and DNA polymerase III holoenzyme (pol III). However, we find that efficient TR can occur in the absence of the Umu proteins if the 3'-5' exonuclease proofreading activity of the pol III epsilon-subunit also is disabled. TR was measured in isogenic uvrA6 DeltaumuDC strains carrying the dominant negative dnaQ allele, mutD5, or DeltadnaQ spq-2 mutations by transfecting them with single-stranded M13-based vectors containing a specifically located cis-syn T-T dimer. As expected, little TR was observed in the DeltaumuDC dnaQ+ strain. Surprisingly, 26% TR occurred in UV-irradiated DeltaumuDC mutD5 cells, one-half the frequency found in a uvrA6 umuDC+mutD5 strain. lexA3 (Ind-) derivatives of the strains showed that this TR was contingent on two inducible functions, one LexA-dependent, responsible for approximately 70% of the TR, and another LexA-independent, responsible for the remaining approximately 30%. Curiously, the DeltaumuDC DeltadnaQ spq-2 strain exhibited only the LexA-independent level of TR. The cause of this result appears to be the spq-2 allele, a dnaE mutation required for viability in DeltadnaQ strains, since introduction of spq-2 into the DeltaumuDC mutD5 strain also reduces the frequency of TR to the LexA-independent level. The molecular mechanism responsible for the LexA-independent TR is unknown but may be related to the UVM phenomenon [Palejwala, V. A., Wang, G. E., Murphy, H. S. & Humayun, M. Z. (1995) J. Bacteriol. 177, 6041-6048]. LexA-dependent TR does not result from the induction of pol II, since TR in the DeltaumuDC mutD5 strain is unchanged by introduction of a DeltapolB mutation.  相似文献   

13.
14.
15.
The N-terminal "B" domain of T4 gene 32 protein contains a Lys3-Arg4-Lys5 sequence that has been postulated to provide a major determinant for cooperative binding. In this report, the equilibrium binding properties of a Lys3 --> Ala substitution mutant of gp32 (K3A gp32) and described and compared to a set of substitution mutants of Arg4 previously described (Villemain, J. L., and Giedroc, D. P. (1993) Biochemistry 32, 11235-11246) and further characterized here. K3A gp32 exhibits binding behavior which mirrors that of R4Q gp32. Despite an 6-8-fold decrease in overall binding affinity (Kapp = Kint x omega) at pH 8.1, 0.20 M NaCl, 20 degrees C, the magnitude of the cooperativity parameter is at most 2-3-fold smaller than that of the wild-type protein. The magnitude of omega is independent of salt concentration and type over the range in [NaCl] from 0.125 to 0. 225 M and [NaF] between 0.20 and 0.32 M (log omega = 2.86 +/- 0.19). For comparison, log omega for wild-type gp32 is 2.91 (+/- 0.21) resolved at 0.275 M NaCl and 3.39 +/- 0.11 in [NaF] between 0.40 and 0.45 M. In contrast to omega, the [NaCl] dependence of Kapp is large and markedly nonlinear for both wild-type and K3A gp32s over a [NaCl] range extending from 0.05 M to 0.40 M NaCl. Modeling of the complete salt dependence of Kapp for wild-type, K3A, and R4T gp32s in NaCl and NaF with a simple ion-exchange model suggests that substitutions within the basic Lys3-Arg4-Lys5 sequence do not strongly modulate the net displacement of cations and anions upon poly(A) complex formation by gp32.  相似文献   

16.
17.
The treatment of fixed human chromosomes by a number of restriction endonucleases has opened additional avenues towards understanding the mechanism(s) of chromosome banding. Metaphase chromosomes from five unrelated individuals were treated with restriction endonuclease Pvu II [CAG decreases CTG] which has a 6 bp recognition site. The banding patterns were compared with another restriction endonuclease Alu I [AG decreases CT] which recognizes only 4 bp but the recognition sequences are identical. The results demonstrate that the banding pattern of human chromosomes observed by Pvu II digestion are apparently identical to those observed by Alu I. The mechanisms of chromosomal banding are discussed.  相似文献   

18.
The animal health hazards associated with the importation of pork and pork products include four viral agents: foot and mouth disease, classical swine fever (hog cholera), African swine fever, and swine vesicular disease viruses. The safety of importing pork from a zone infected with one or more of these diseases can be adequately determined only through risk assessment. This also applies for the safety of importing pork products which have undergone some form of processing (fully cooked pork products are not counted here). For each disease, the agent (pH and temperature lability), target organs, agent survival in pork and pork products, and agent quantification are discussed. Agent quantification is an input of the risk assessment which measures the viral titres in waste pork and pork products in relation to the oral infective dose estimated for each disease. Two other viral diseases, transmissible gastroenteritis of pigs and porcine reproductive and respiratory syndrome, are presented to illustrate why these two diseases are not hazards when associated with pork and pork products.  相似文献   

19.
Three amino acid residues highly conserved in most proofreading DNA polymerases, a phenylalanine contained in the Exo II motif and a serine and a leucine belonging to the S/TLx2h motif, were recently shown to be critical for 3'-5' exonucleolysis by acting as single-stranded DNA ligands (de Vega, M., Lázaro, J.M., Salas, M. and Blanco, L. (1998) J. Mol. Biol. 279, 807-822). In this paper, site-directed mutants at these three residues were used to analyze their functional importance for the synthetic activities of phi29 DNA polymerase, an enzyme able to start linear phi29 DNA replication using a terminal protein (TP) as primer. Mutations introduced at Phe65, Ser122, and Leu123 residues of phi29 DNA polymerase severely affected the replication capacity of the enzyme. Three mutants, F65S, S122T, and S122N, were strongly affected in their capacity to interact with a DNA primer/template structure, suggesting a dual role during both polymerization and proofreading. Interestingly, mutant S122N was not able to maintain a stable interaction with the TP primer, thus impeding the firsts steps (initiation and transition) of phi29 DNA replication. The involvement of Ser122 in the consecutive binding of TP and DNA is compatible with the finding that the TP/DNA polymerase heterodimer was not able to use a DNA primer/template structure. Assuming a structural conservation among the eukaryotic-type DNA polymerases, a model for the interactions of phi29 DNA polymerase with both TP and DNA primers is presented.  相似文献   

20.
Cleavage positions of Bst API, a new restriction endonuclease (ENase) that recognizes palindromic interrupted DNA sequence, have been determined. Recognition sequences and cleavage sites comparison shows that Bst API shares similarity with a number of type II restriction enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号