首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 192 毫秒
1.
高速两栖车辆水上航行阻力特性数值分析   总被引:1,自引:0,他引:1  
采用数值计算方法研究了高速两栖车辆水上航行的阻力特性,得到了其粘性绕流场分布.数值计算结果和实验取得了较好的一致.结果表明,所采用车型适用于高航速状态,随着Fr数的增加,车体从排水型逐渐过渡到滑水型,阻力呈现先增大后减小的趋势.在Fr=1.65时,出现阻力峰值.在高速段,随着航行速度的增加,车体阻力降低,速度逐渐减小.  相似文献   

2.
李莉  王宪成  韩树  王普凯 《兵工学报》2010,31(8):1102-1105
为了研究兴波阻力对两栖车辆航速的影响,建立了某型两栖车辆兴波阻力的数学模型,应用连续源分布法计算了兴波阻力;根据车体外部流场结构和求解要求,采用非结构化网格与网格自适应技术实施区域离散化,运用计算流体动力学(CFD)求解了车辆周围流域的压力场,并进行了流场分析。算例和流场分析结果表明:这种兴波阻力的计算方法可用于排水型两栖车辆的最高航速预报和减阻提速的研究。  相似文献   

3.
王少新  金国庆  王涵  孙蕊  刘贺 《兵工学报》2020,41(3):434-441
近年来开发了双车厢的水陆两栖车以提高其运载能力。研究基于某型号双车厢水陆两栖车的实尺度模型,采用计算流体力学方法和重叠网格技术建立多体运动的数值仿真模型,双车厢之间采用具有3自由度的球形铰接点进行连接。计算双车厢两栖车在静水中运动的水动力性能,分析前后车体的阻力、纵摇、垂荡运动性能以及球铰连接对车体的影响。研究结果表明:数值计算与拖曳水池试验的总阻力结果基本一致;基于可实现的k-ε湍流模型和多体重叠网格技术,可以很好地实现对双车厢两栖车水动力性能的数值预报;静水直航工况下两栖车的纵倾角度保持在1°以内,纵摇性能优良。  相似文献   

4.
毛明  汪建兵 《兵工学报》2016,37(9):1553-1560
防浪板是影响两栖车辆整车水上性能重要部件之一,为了研究防浪板对排水型两栖车辆水动力学的影响,建立了排水型两栖车辆流体力学计算模型。针对防浪板的形状、大小以及与车体的相对位置变化进行整车航行动力学仿真,综合分析了防浪板对整车航行阻力、升力以及纵向俯仰力矩的影响,并与试验数据进行了对比。研究结果表明:在形状方面,分段平板式防浪板具有弧形与平板式各自优点,是较佳的工程结构;在宽度上,随着宽度增加,阻力和升力变化不大,纵向恢复力矩增加较多,超过一定宽度后阻力急剧增加;在与车体相对距离方面,随着距离的增加,航行阻力增加,升力下降,纵向恢复力矩增幅较大;在防浪板与车体底平面夹角上,随着角度的增加,整车阻力和升力变化不大,但纵向恢复力矩增加显著。  相似文献   

5.
针对某轮式两栖车辆,采用k-ω湍流模型和Level Set多相流处理方法对两栖车体绕流场进行数值模拟.通过与试验结果的对比,验证了数值方法的可行性,并对比了基础车型与加装尾翼板和防浪板的车型在不同工况下的航行阻力特性.研究结果表明:对于轮式两栖车辆,尾翼板减阻与Fr密切相关.当Fr<2.087时,加装尾翼板能够起到较好的减阻效果;当Fr>2.087时,加装尾翼板反而起到增阻作用,此时需收起尾翼板.  相似文献   

6.
提高两栖战斗车辆水上航速的研究   总被引:2,自引:0,他引:2  
通过分析航态对阻力特性的影响可知,要提高两栖战斗车辆水上航速,必须使两栖车辆进入到滑行状态。根据对美国研制的先进两栖突击车(AAAV)的研究,提出了提高两栖战斗车辆水上航速的基本思路和方法。  相似文献   

7.
利用Solidworks软件对两栖车辆进行三维建模,并进行了简化处理。对绕流场进行了划分,通过调整三个区域的相互位置,采用滑移网格方法实现了车体航行姿态的变化。在Fluent软件平台下,通过UDF程序监测浮力和重力、绕重心转矩为零的平衡关系,模拟出了在有无防浪板的情况下,总阻力、吃水深和纵倾角随速度的变化规律。从模拟结果看,速度较高时,间歇式防浪板有效的减少了总阻力、吃水深和纵倾角,提高了两栖车辆水上行驶的稳定性。  相似文献   

8.
某水陆坦克静水航行性能数值模拟研究   总被引:2,自引:0,他引:2  
在进行水陆坦克设计时,传统的方法主要通过模型拖模试验研究分析水上性能和验证设计.针对拖模试验存在的自身无法克服的几方面问题,采用流体力学分析软件,利用非定常水动力学理论耦合6自由度刚体运动和自由水面进行数值模拟仿真,计算坦克车辆水动力特性·计算值与实车试验结果基本相符,计算精度满足要求,表明采用数值模拟分析水陆坦克部分水动力特性、预测航速航姿、优化车体外形是有效的水陆坦克水上性能的设计方法.同时通过仿真计算获得了最佳尾滑板角度,提出了减小航行阻力和摩擦阻力的措施.  相似文献   

9.
相对普通枪弹,灵巧枪弹具有小尺寸和高命中精度的特点,可显著增强单兵战斗力和生存能力。考虑器件尺寸和气动特性的技术要求,设计了一种新型增程灵巧枪弹的气动外形。该灵巧枪弹与普通枪弹在外形尺寸上有很大区别,气动特性及流场特征尚不明了,因此有必要对灵巧枪弹气动特性进行深入研究。采用数值仿真和风洞实验的方法研究了灵巧枪弹的气动特性,并分析了弹尾外形尺寸变化对灵巧枪弹气动特性的影响规律。研究结果表明:数值仿真结果和风洞实验结果基本一致,证明了数值仿真方法的可行性;随着灵巧枪弹收缩段长度的增加,阻力先减小、后增大,升力和俯仰力矩绝对值先基本保持不变、后增大;随着交界半径的增大,阻力、升力和俯仰力矩绝对值均减小;随着弹底半径的增大,阻力先增大、后减小,升力和俯仰力矩绝对值先减小、后增大。  相似文献   

10.
快凝耐热铝合金已广泛应用于水陆两栖装甲车与轻型装甲侦察车车身等结构,由于车身铝合金材质的薄弱部件易受子弹撞击,导致车身关键部位所受损伤与破坏问题较为严重,因此有必要对铝合金薄板被子弹击穿时的损伤特性开展研究。本文通过ABAQUS仿真平台建立铝合金薄板与子弹弹头的显式动力学模型,研究了7.62 mm与9 mm两种不同口径的子弹弹头侵彻倾角、弹头自身角速度等参数对高强度铝合金薄板的损伤特性。结果表明:在相同侵彻倾角与子弹初速与角速度的情况下,9 mm子弹弹头对铝合金薄板造成的损伤程度更大,使薄板受到更大冲击; 7.62 mm子弹弹头对铝合金薄板的侵彻力度更大,有更好的贯穿特性; 随着子弹角速度的增加,两种型号子弹弹头对铝合金薄板破坏程度先增大后减小,角速度为2 000 rad/s时达到临界值; 侵彻倾角影响矩形模板破坏程度,但该影响存在临界值,到达临界值前,子弹穿透能力较小; 到达临界值后,继续增大倾角不再增大穿透能力; 同时随着倾角的增大,9 mm子弹弹头对铝合金薄板生成的动能总体均先增大后减小,倾角为45°时对矩形模板产生的动能最大。  相似文献   

11.
为提高水陆两栖车水上航行时的操纵性与稳定性,提出一种新型矢量喷口装置.喷口装置有俯仰与旋转两个运动自由度,可以控制喷水推进器喷射水流的方向,生成方向可控的三维矢量推力.根据水陆两栖车喷水推进理论,完成满足某型轮式两栖车航行动力需求与平台约束的喷水泵基本参数设计.依据计算的水泵出口直径完成与喷水泵一体化的矢量喷口结构与控...  相似文献   

12.
赵彬  张敏弟  剧冬梅 《兵工学报》2015,36(3):412-420
针对两栖车水上航行姿态,构建描述两栖车水上运动的动力学模型,采用混合耦合算法和动网格技术研究静水直航状态下,两栖车航行姿态的变化规律,模拟结果与实验值吻合较好。研究结果表明:车体达到稳定航行姿态会经历大幅振荡调整阶段和平稳运动阶段,车体平衡后,升沉和纵倾仍会有小幅变化;两栖车由排水航行状态逐步增速到滑行状态的过程中,车体重心逐渐升高,动升力在支撑车重成分中所占的比例越来越大,静浮力则越来越小。  相似文献   

13.
超音速单轨火箭滑橇气动特性数值模拟   总被引:1,自引:1,他引:1  
基于三维粘性可压缩N-S方程以及k-ω湍流模型方程,分析了单火箭滑橇在超音速近地飞行时的气动特性.计算网格为三角形非结构网格和四边形结构网格组成的混合网格,采用有限体积法对微分方程进行离散,应用隐式耦合算法求解离散方程.数值模拟了速度及攻角变化对火箭滑橇气动特性的影响.结果表明,随着马赫数的增加,火箭弹头部表面压力升高;超音速飞行时,火箭弹头部产生激波;火箭滑橇阻力系数随着马赫数的增加,先增加后降低;在小的气动攻角条件下气动阻力和升力变化不大,而侧向力载荷随着气动功角的增加而增大.数值模拟结果为超音速单轨火箭滑橇设计提供了参考.  相似文献   

14.
车辆“减阻增速”研究与试验   总被引:2,自引:0,他引:2  
对比研究了减阻增速和增功率增速两种技术途径,并在两栖车辆领域作了模型和实车试验,初步验证了减阻增速有广阔的科研领域和丰富的技术内容.  相似文献   

15.
提高两栖车辆水上行驶速度的车体设计方案研究   总被引:1,自引:1,他引:1  
李玉良  潘双夏 《兵工学报》2007,28(9):1116-1121
考虑到两栖车辆的车体小、质量大,提高其海上滑行时的升阻比系数是降低车头离水所需速度,减少水阻,实现高速航驶的关键之一。提出了根据边界层和湍流仿真理论确定数值计算时车体边界网格划分的时方法,采用VOF(Volume of Fluid)多相流模型对不同车体方案在不同速度下的水上性能进行了并行数值计算和对比,发现适当增加车体攻角以及在车体裙板加薄翼滑板的复合型车体是提高升阻比系数的有效方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号