首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 764 毫秒
1.
Thermo-Mechanical Analysis of Water-Cooled Gun Barrel During Burst Firing   总被引:1,自引:0,他引:1  
The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha-nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.  相似文献   

2.
when a gun fires, a large amount of heat is brought in the barrel. Erosion/wear and security problems(self ignition of the propellant) associated with this high thermal energy have to be solved owing to the use of higher combustion gas temperature for improved cannon performance and firing at the sustained high rates, Barrel cooling technologies are the effective measures for addressing this issue, In view of the importance of having knowledge of the heat flux, an approach to calculate heat flux based on measurements was presented and validated. The calculated heat flux is used as the inner boundary condition for modeling heat transfer in a 155 mm mid-wall cooled compound gun barrel, Theoretical analysis and simulated results show that natural air cooling is dramatically slower than the forced liquid mid-wall cooling, accordingly wear life of actively cooled barrel is increased and barrel overheating is prevented,  相似文献   

3.
Numerical simulation on the flow fields near the dimpled and the smooth revolution bodies are performed and compared by using SST k-ω turbulence model, to explain the reasons of friction and base drag reductions on the bionic dimpled surface and the control behaviors of dimpled surface to boundary layer near wall of the revolution body. The simulation results show that the dimpled surface reduces the skin friction drag through reducing the velocity gradient and turbulent intensity, and reduces the base drag through weakening the pumping action on the flow behind the revolution body caused by the external flow; the low speed rotating vortexes in the dimples segregate the external flow and the revolution body; and the low speed rotating vortexes forming in the bottom of dimples can produce negative skin friction.  相似文献   

4.
When the mechanical drive is changed into the electric transmission,the cooling system of the engine compartment should be altered to meet the new requirement for the increasing in equipment such as electric apparatus.In order to predict and analyze the rationality of cooling system in the virtual engine compartment,the numerical simulation of airflow fields in the engine compartment by using computational fluid dynamics(CFD) technique is necessary.An armored vehicle with electric transmission in the research is taken as the research object.The physical model and mathematical model for the computation of 3D air flow and heat transfer in the engine compartment of an armored vehicle with electric transmission is established.Turbulent flow in the compartment is described by using the standard k-ε two-equation turbulence model.The temperature and velocity fields of 3D air flow in the engine compartment are numerically simulated and analyzed based on different fan's flux.A theoretical basis for determination of the fan's flux is given by the simulation results.The positions of the air-vent shutter are analyzed.The simulation results show that the different positions of the air-vent shutter can lead to different cooling efficiencies.  相似文献   

5.
A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater temperature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short;and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent control of the cooling system.  相似文献   

6.
The casting-solid extrusion forging plus semi-solid partial remelting route is used to improve the properties of AZ31 magnesium alloy products. The effect of remelting temperature and holding time on the microstructure of AZ31 magnesium alloy is studied. Furthermore, the properties of AZ31 magnesium alloy components produced by the casting-solid extrusion forging plus partial remelting route are examined. The results show that the AZ31 components have very good smooth surface and are formed completely. The increases in holding time and remelting temperature result in the formation of spheroidal grains surrounded by liquid phases. The best combination of properties of thixoforged alloy is 290 MPa of tensile strength, 220 MPa of yield strength and 10% of percentage elongation.  相似文献   

7.
Compared with conventional materials, the active cooling ceramic matrix composite used in ramjet or scramjet makes their structures lighter in mass and better in performance. In this paper, an active and a passive cooling refractory composite specimens are designed and tested with an experimental facility composed of muhilayer smale scale cooling penel which consists of a water cooling system and a ceramic matrix composite specimen, and a gas generator used for providing lower and higher transfer rate gases to simulate the temperatures in combustion chamber of ramjst. The active cooling specimen can continuously suffer high surface temperature of 2 000 K for 30 s and that of 3 000 K for 9.3 s, respectively. The experiment results show that the active cooling composite structure is available for high-temperature condition in ramjet.  相似文献   

8.
A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density (HPD). A space-time conservation element and solution element (CE/SE) method is used to derive the discrete equations of the partial differential equation for the intake and exhaust systems. The performance parameters of diesel engine with speed of 2100 r/min are simulated. The simulated results are in accordance with the experimental data. The effect of increased power density on charging coefficient is analyzed using a validated model. The results show that the charging coefficient is slowly improved with the increase in intake pressure, and is obviously reduced with the increase in engine speed.  相似文献   

9.
Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer sizer, transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to test the profiles and diameters of the product particles. The test results indicate that the production is nanometer α-Fe2O3 with narrow particle size distribution (PSD) and good dispersibility. The catalysts are mixed with ammonia perchlorate (AP) in 1.0 wt.%. And the composite particles of catalysts with AP are prepared using a new solvent-nonsolvent method. Differential thermal analyzer (DTA) is employed to analysis the thermal decomposition of the composite particles and pure AP sample. The results imply that the thermal decomposition curve peaks of the samples in which nanometer α-Fe2O3 catalysts are added appear comparatively more ahead than that of pure AP sample. Among these mixtures added nanometer material, the smaller the particle diameter of catalyst is, the more ahead the thermal decomposition curve peaks of AP appear. The high and low temperature thermal decomposition curve peaks of AP mixed with the catalyst deposed by urea are more ahead of 77.8℃ and 9.7℃ than that of pure AP, respectively. The mechanism of the catalyst deposed by urea with smaller diameter and the distinct catalysis of the particles on the thermal decomposition of AP are discussed.  相似文献   

10.
The kinetic parameters of the exothermic decomposition reaction of s-Tripicryaminotrinitrobenzene under linear temperature rise condition are studied by means of DSC. The results show that the empirical kinetic model function in differential form, apparent activation energy and pre-exponential constant of the reaction are 225.4 kJ·mol-1 and 1 019.53 s-1, respectively. The critical temperature of thermal explosion of the compound is 267.36 ℃.  相似文献   

11.
军用车辆冷却系统的风扇是车辆噪声的主要来源和发动机有效功率的消耗者之一,而噪声的强度和功率的消耗均与风扇的转速有关。根据冷却的实际需要自动调节风扇的转速,不仅可降低功率消耗、节省燃油,而且还可以达到降低噪声、延长发动机寿命等效果。本文对国产中型坦克发动机冷却风扇采用温控自动调速硅油离合器的可行性进行了探讨,介绍了它的结构、工作原理、传扭计算以及试验结果,为我国军用车辆冷却系统风扇的温控调速做了一次有价值的尝试。  相似文献   

12.
湿式离合器摩擦副平均温升特性研究   总被引:2,自引:0,他引:2  
针对湿式换挡离合器结合过程温升特性,基于集总参数法将离合器液压系统各元件简化为节点,建立了系统热阻网络模型与试验系统,研究获得了冷却润滑流量和转速差对离合器温升的影响规律。研究结果表明:在中低摩擦热负荷下,离合器温升对冷却流量的改变不敏感;在中高摩擦热负荷下,冷却流量变化对离合器温升影响显著,但当冷却流量增大到超过某一临界值时,流量增加对离合器温升影响微弱;转速差与离合器结合油压影响摩擦热负荷强度;离合器温升表现为转速差的线性增长关系,在相同冷却润滑状态下,转速差每增加100 r/min,离合器温升增加8.05%. 通过仿真结果与试验数据的对比,验证了所建模型的有效性,该模型能较好反映离合器正常工况的温升特性。  相似文献   

13.
在Newton冷却模型的基础上,用数值求解方法计算了FGH95高温合金在等离子旋转电极雾化(PREP)过程中雾化熔滴的温度、固相分数、冷却速率等凝固参量随工艺参数的变化规律。结果表明:合金过热度对凝固参量的影响主要在全液态阶段,电极棒转速大小对熔滴凝固过程有一定影响,而雾化熔滴的冷却速率及固相分数等对氩氦气体的混合比例极为敏感。  相似文献   

14.
为了研究固体火箭发动机尾焰注水流场对导流槽排导通畅性的影响,设计了火箭发动机和导流槽缩比模型并完成了发动机系留点火及注水试验。结果表明:向尾焰注水能够使流入导流槽内混合气体温度降低到原来的1/2,实现对导流槽的热防护;但大量的水蒸气生成并与燃气混合后进入导流槽,影响了导流槽的排导性能。为了解决该问题,建立了在Mixture多相流模型基础上的数值计算模型,在Mixture多相流模型中以源项形式添加液态水与燃气两相流作用过程中的质量和能量转移方程,通过与试验数据对比,验证计算模型具有较高的精度和可靠性,并进一步得出燃气流场和液体流场的相互作用和对导流槽的排导性能的影响。在此基础上分析了发动机喷管数量、导流型面曲线类型对导流槽排导通畅性的影响,为火箭发动机尾焰注水系统工程应用提供参考。  相似文献   

15.
由于按照模块单元来实现热电材料回收废热具备优势,在试验校核的基础上建立了热- 电-结构的有限元分析模型用于热电模块在汽车排气管上布置特性的研究。首先热通量模拟结果显示排气管壁面与热电模块接触处存在大热斑,根据大热斑的轮廓得到本文研究的热电模块之间的最佳布置间隙为6. 6 mm。然后根据最大输出功率原则精确计算了热电模块的内阻值,内阻的获得为模块矩阵的结构优化提供了参考依据。最后利用模型对热电模块的薄弱结构进行热应力校核,校核结果为热电模块的可靠布置提供了参考依据。  相似文献   

16.
室温磁制冷机乙醇水溶液传热特性实验研究   总被引:2,自引:1,他引:1  
以旋转式磁制冷样机为研究对象,研究乙醇水溶液与水在主动式回热器(AMR)的传热特性;探讨不同物理性质的换热流体组成的室温磁制冷机的蓄热机理;分析工质盘转速、换热流体流量、温跨等参数对工质盘温度分布的影响。实验结果表明:使用乙醇水溶液取代水作为工质盘的换热流体,有利于增大多孔介质的渗透率,使工质盘温度降低,系统的冷端获得较大的温度梯度,系统制冷功率提高6%左右。50%浓度的乙醇水溶液比10%浓度的乙醇水溶液,系统制冷量可以高出20W,冷端温降高出0.3 K左右。  相似文献   

17.
吴永海  徐诚  陆昌龙  李峰 《兵工学报》2008,29(3):266-270
身管液冷技术在陆基防空反导小口径自动炮和舰载中、小口径火炮中被广泛采用,研究身管液冷状态下的温度分布对于火炮发射安全性和武器效能具有重要意义。以某速射火炮为对象,采用热一流一固耦合的研究方法,将传统的温度场计算方法割裂的固体计算区域和流体计算区域祸合在一起,建立了统一的流固传热数学模型。此外,使用计算流体动力学( CFD)计算方法,计算了材料性能与温度相关的身管系统的瞬时温度历程,并讨论了不同速度的冷却水流对身管温度的影响。研究表明:炮身水流外冷却方式对于外壁的冷却效果非常明显,沿径向向内,水流带来的温度降幅逐渐减少;靠近炮管外壁表面的冷却水流薄层温度变化很大;当入口水流超过~定速度时,通过增加流速带来的身管温度场下降很小。  相似文献   

18.
杨辉  谢卫  张拴勤  潘家亮 《兵工学报》2012,32(3):267-270
为实现针对高温机动目标的红外伪装难题,试图利用热管温控组件设计高效导热散热结构,以降低机车发动机排气管的温度而实现红外伪装.首先进行了热管传热的理论计算,在此基础上建立了高温排气管热管温控红外抑制结构模型,并且搭建了模拟验证试验装置,试验结果表明采用热管温控结构可使发动机排气管的热抑制效能达到62.9%,具有明显的红外...  相似文献   

19.
用Abaqus软件结合单元生死法,建立钨极惰性气体(tungsten inert gas,TIG)增材成形5356铝合金有限元模型,探讨层间冷却时间、增材方向及预热对温度场的影响规律,并通过实测温度验证仿真结果。结果表明:随层间冷却时间递增,第1层表面中点温度循环曲线的峰值与谷值下降;随层数增加,峰值温度先快速下降,后缓慢下降;谷值温度先快速增加,后缓慢增加。往复式增材成形可有效改善同向增材在熄弧端因热量积累导致的成形缺陷,有利于提升表面平整度。在合理温度范围内的基板预热可使温度分布更均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号