首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogenation of CO over mixed oxides (RhVO4, Rh2MnO4) supported on SiO2 has been studied after H2 reduction at 300°C and at 500°C, and the results compared with those of unpromoted Rh/SiO2 catalysts. Rh was more highly dispersed (40 Å) after the decomposition of RhVO4 by the H2 reduction than those of Rh2MnO4/SiO2 and unpromoted Rh/SiO2 catalysts. The activity and the selectivity to C2 oxygenates of the mixed-oxide catalysts after the H2 reduction were higher than those of the unpromoted Rh/SiO2 catalysts, but the activity of the RhVO4/SiO2 catalyst increased more dramatically after the decomposition by the H2 reduction at 300°C, and hence the yield of C2 oxygenates increased. These results suggest that a strong metal–oxide interaction (SMOI) was induced by the decomposition of the mixed oxides after the H2 reduction. The catalytic activity and selectivity were reproduced repeatedly by the calcination and reduction treatments of the spent (used) catalyst because of the regeneration of RhVO4 and redispersion of Rh metal.  相似文献   

2.
The extent of Rh–niobia interaction in niobia-supported Rh (Rh/Nb2O5), niobia-promoted Rh/SiO2 (Nb2O5–Rh/SiO2) and RhNbO4/SiO2 catalyst after H2 reduction has been investigated by H2 and CO chemisorption measurements. These catalysts have been applied to selective CO oxidation in H2 (CO+H2+O2) and CO hydrogenation (CO+H2), and the results are compared with those of unpromoted Rh/SiO2 catalysts. It has been found that niobia (NbOx) increases the activity and selectivity for both the reactions.  相似文献   

3.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

4.
A novel TiO2/Al2O3/cordierite honeycomb-supported V2O5–MoO3–WO3 monolithic catalyst was studied for the selective reduction of NO with NH3. The effects of reaction temperature, space velocity, NH3/NO ratio and oxygen content on SCR activity were evaluated. Two other V2O5–MoO3–WO3 monolithic catalysts supported on Al2O3/cordierite honeycomb or TiO2/cordierite honeycomb support, two types of pellet catalysts supported on TiO2/Al2O3 or Al2O3, as well as three types of pellet catalysts V2O5–MoO3–WO3–Al2O3 and V2O5–MoO3–WO3–TiO2 were tested for comparison. The experiment results show that this catalyst has a higher catalytic activity for SCR with comparison to others. The results of characterization show, the preparation method of this catalyst can give rise to a higher BET surface area and pore volume, which is strongly related with the highly active performance of this catalyst. At the same time, the function of the combined carrier of TiO2/Al2O3 cannot be excluded.  相似文献   

5.
The catalytic performance of some metal oxides in the selective oxidation of H2S in the stream containing water vapor and ammonia was investigated in this study. Among the catalysts tested, V2O5/SiO2 and Fe2O3/SiO2 catalyst showed good conversion of H2S with very low selectivity to undesired SO2. Hydrogen sulfide could be recovered as harmless solid products (elemental sulfur and various ammonium salts), and distribution of solid products was varied with types of catalyst and compositions of reactant. XRD and FT-IR analysis revealed that the salt was mixture of ammonium–sulfur–oxygen compounds. It was noteworthy that V2O5/SiO2 catalyst produced elemental sulfur and ammonium thiosulfate, and that elemental sulfur was principal product on Fe2O3/SiO2 catalyst. Small amount of ammonium sulfate was obtained with the Fe2O3/SiO2 catalyst. In order to elucidate the reaction path, the effects of O2/H2S ratio and concentration of NH3 and H2O are also studied with the V2O5/SiO2 catalyst.  相似文献   

6.
An in situ diffuse reflectance FT-IR technique was employed to investigate the active surface species and the reaction mechanism of the oxygenate formation in the vapor phase hydroformylation of ethene on Co/SiO2 promoted with various noble metals such as Ir, Rh, Pt, Re, Ru, and Pd. Co(A)/SiO2 and Ir(CO)/SiO2 which were derived from cobalt(II) acetate and Ir4(CO)12, respectively, were quite inactive in the reaction, and showed only quite small peaks of adsorbed CO under the conditions of 1.1 MPa of C2H4/CO/H2 at 298 K. In contrast, Co(A)-Ir(CO)/SiO2, which were very active in the reaction, exhibited strong absorption bands of linear and bridged CO species. At 423–463 K, propanal adsorbed on the catalyst and acyl species which is suggested as the intermediate for the formation of propanal were also observed on this catalyst. By exposing CO preadsorbed on this catalyst to C2H4/H2 at 289 K and 0.1 MPa, the intensity of the linear CO band decreased, and the bands of propanal and acyl species emerged simultaneously, whereas that of the bridged CO band remained constant after the initial drop. These results suggested that the oxygenates are formed via the CO insertion into adsorbed ethyl species, and linear CO species plays a major role in the CO insertion on these noble metal-promoted cobalt catalysts.  相似文献   

7.
Two different commercial SCR catalysts belonging to the V2O5–WO3–TiO2 system, and different alternative catalysts based on Mn, Fe, Cr, Al and Ti oxides have been tested in the conversion of VOCs in excess oxygen in a temperature range typical of the SCR process (500–700 K). Propane, propene, isopropanol, acetone, 2-chloropropane and 1,2-dichlorobenzene have been fed with excess oxygen and helium. The industrial catalysts are poorly active in the conversion of propane, giving mainly rise to propene by oxy-dehydrogenation. The conversion of propene is higher with CO as the predominant product. In any case, the oxidation activity depends on the vanadium content of the catalyst. Isopropanol is mainly converted into acetone and propene, while acetone is burnt predominantly to CO. Mn- and Fe- containing systems are definitely more active in the conversion of hydrocarbons and oxygenates, giving rise almost exclusively to CO2. 2-Chloropropane is selectively dehydrochlorinated to propene and HCl starting from 350 K, propene being later burnt to CO on the industrial V2O5–WO3–TiO2 catalysts, whose combustion activity is, apparently, not affected by chlorine. On the contrary, chlorine strongly affects the behavior of Mn-based catalysts, that are active in the dehydrochlorination of 2-chloropropane, but are simultaneously deactivated with respect to their combustion catalytic activity. The conversion of 1,2-dichlorobenzene gives rise to important amounts of heavy products in our experimental conditions with relatively high reactant concentration.  相似文献   

8.
The effect of the addition of a second fuel such as CO, C3H8 or H2 on the catalytic combustion of methane was investigated over ceramic monoliths coated with LaMnO3/La-γAl2O3 catalyst. Results of autothermal ignition of different binary fuel mixtures characterised by the same overall heating value show that the presence of a more reactive compound reduces the minimum pre-heating temperature necessary to burn methane. The effect is more pronounced for the addition of CO and very similar for C3H8 and H2. Order of reactivity of the different fuels established in isothermal activity measurements was: CO>H2≥C3H8>CH4. Under autothermal conditions, nearly complete methane conversion is obtained with catalyst temperatures around 800 °C mainly through heterogeneous reactions, with about 60–70 ppm of unburned CH4 when pure methane or CO/CH4 mixtures are used. For H2/CH4 and C3H8/CH4 mixtures, emissions of unburned methane are lower, probably due to the proceeding of CH4 homogeneous oxidation promoted by H and OH radicals generated by propane and hydrogen pyrolysis at such relatively high temperatures.

Finally, a steady state multiplicity is found by decreasing the pre-heating temperature from the ignited state. This occurrence can be successfully employed to pilot the catalytic ignition of methane at temperatures close to compressor discharge or easily achieved in regenerative burners.  相似文献   


9.
The reduction of nitrogen monoxide by propene on V2O5/ZrO2 doped with or without calcium has been studied by FTIR spectroscopy as well as by analysis of the reaction products. Considerable promoting effect of calcium doping on the reduction of nitrogen monoxide by propene was observed on the V2O5/ZrO2 catalysts. For the reaction of a mixture of NO+C3H6, carbonyl and carboxylate species were observed above 373 K, although nitrate species formed at room temperature on V2O5/ZrO2 doped with calcium. No bands due to a compound including both carbon and nitrogen atoms were observed. Thus, the redox mechanism, i.e. propene reduces the catalyst and nitrogen monoxide oxidizes the catalyst, is confirmed on V2O5/ZrO2 catalysts doped with or without calcium. The analysis of the V=O band in the region of 1100–900 cm−1 indicates that this promotion is mainly due to new V=O species formed by the addition of calcium onto the catalyst. This species is easily reproduced in comparison with the other V=O species on the surface in the reoxidation process of the catalyst.  相似文献   

10.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

11.
The catalytic behaviour of SiO2 supported MoO2 and V2O5 catalysts in the partial oxidation of methane to formaldehyde with O2 (MPO) in the range 400–800°C has been investigated by temperature programmed reaction (TPR) tests. Both the sequence of the onset temperature of product formation and the product distribution patterns signal that MPO on silica based oxide catalysts occurs mainly via a consecutive reaction path: CH4 → HCHO → CO → CO2. At T >/ 700°C a parallel surface assisted gas-phase reaction pathway leads to the formation of minor amounts of C2 products both on SiO2 and MoO3/SiO2 catalysts. The redox properties of MoO3/SiO2 and V2O5SiO2 catalysts have been systematically evaluated by H2 and CH4 temperature programmed reduction (H2-TPR, CH4-TPR) measurements. H2-TPR results do not account for the reactivity scale of oxide catalysts in the MPO. CH4-TPR measurements indicate that the enhancement in the specific activity of the silica is controlled by the capability of MoO3 and V2O5 promoters in providing ‘active’ lattice oxygen species.  相似文献   

12.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

13.
The surface properties of a series of V2O5 catalysts supported on different oxides (Al2O3, H–Na/Y zeolite, MgO, SiO2, TiO2 and ZrO2) were investigated by transmission electron microscopy and FTIR spectroscopy augmented by CO and NH3 adsorption. In the case of the V2O5/SiO2 system TEM images evidenced the presence of V2O5 crystallites, whereas such segregated phase was not observed for the other samples. VOx species resulted widely spread on the surface of Al2O3, H–Na/Y zeolite, MgO and SiO2, whereas on TiO2 and ZrO2 they are assembled in a layer covering almost completely the support. Furthermore, evidences for the presence in this layer of V–OH Brønsted acid sites close to the active centres were found. It is proposed that propene molecules primarily produced by oxydehydrogenation of propane can be adsorbed on this acid centres and then undergo an overoxidation by reaction with redox centres in the neighbourhood. This features could account for the low selectivity of V2O5/TiO2 and V2O5/ZrO2 catalysts.  相似文献   

14.
采用浸渍法制备了不同CoCr_2O_4负载量x CoCr_2O_4/SiO_2催化剂(x=5%、10%、20%和30%),考察其对二氯甲烷催化燃烧性能的影响。结果表明,催化剂的整体活性顺序为:30CoCr_2O_4/SiO_220CoCr_2O_4/SiO_210CoCr_2O_4/SiO_25CoCr_2O_4/SiO_2,但按照活性组分CoCr_2O_4质量归一化后本征活性顺序为:10CoCr_2O_4/SiO_2≈5CoCr_2O_4/SiO_220CoCr_2O_4/SiO_230CoCr_2O_4/SiO_2。表征结果发现催化剂本征活性与可还原性能和表面酸性存在密切关系。10CoCr_2O_4/SiO_2和5CoCr_2O_4/SiO_2具有较高的表面酸性和耗氢量,因此具有较高的本征活性。  相似文献   

15.
The effect of different reducing agents (H2, CO, C3H6 and C3H8) on the reduction of stored NOx over PM/BaO/Al2O3 catalysts (PM = Pt, Pd or Rh) at 350, 250 and 150 °C was studied by the use of both NO2-TPD and transient reactor experiments. With the aim of comparing the different reducing agents and precious metals, constant molar reduction capacity was used during the reduction period for samples with the same molar amount of precious metal. The results reveal that H2 and CO have a relatively high NOx reduction efficiency compared to C3H6 and especially C3H8 that does not show any NOx reduction ability except at 350 °C over Pd/BaO/Al2O3. The type of precious metals affects the NOx storage-reduction properties, where the Pd/BaO/Al2O3 catalyst shows both a high storage and a high reduction ability. The Rh/BaO/Al2O3 catalyst shows a high reduction ability but a relatively low NOx storage capacity.  相似文献   

16.
For almost a century vanadium oxide based catalysts have been the dominant materials in industrial processes for sulfuric acid production. A vast body of information leading to fundamental knowledge on the catalytic process was obtained by Academician [G.K. Boreskov, Catalysis in Sulphuric Acid Production, Goskhimizdat (in Russian), Moscow, 1954, p. 348]. In recent years these catalysts have also been used to clean flue gases and other SO2 containing industrial off-gases. In spite of the importance and long utilization of these industrial processes, the catalytic active species and the reaction mechanism have been virtually unknown until recent years.

It is now recognized that the working catalyst is well described by the molten salt/gas system M2S2O7–MHSO4–V2O5/SO2–O2–SO3–H2O–CO2–N2 (M=Na, K, Cs) at 400–600°C and that vanadium complexes play a key role in the catalytic reaction mechanism.

A multiinstrumental investigation that combine the efforts of four groups from four different countries has been carried out on the model system as well as on working industrial catalysts. Detailed information has been obtained on the complex and on the redox chemistry of vanadium. Based on this, a deeper understanding of the reaction mechanism has been achieved.  相似文献   


17.
A series of bifunctional Ni-H3PW12O40/SiO2 catalysts for the hydrocracking of n-decane were designed and prepared. The evaluation results of the catalysts show that Ni-H3PW12O40/SiO2 catalysts possess a high activity for hydrocracking of n-decane and an excellent tolerance to the sulfur and nitrogen compounds in the feedstock. Under the reaction conditions: reaction temperature 300 °C; H2/n-decane volume ratio of 1500; total pressure of 2 Mpa and the LHSV 2 h−1, the conversion of n-decane over reduced 5%Ni-50%H3PW12O40/SiO2 catalysts is as high as 90%, the C5+ selectivity equal to 70%. In order to reveal the structure and nature of the catalysts, a number of characterizations including XRD, Raman, H2-TPD, NH3-TPD, XPS and FT-IR of pyridine adsorption were carried out. The characteristic results show that the high activity of the catalysts and high C5+ selectivity can be related to the unique structure of the H3PW12O40 and its suitable acidity.  相似文献   

18.
The NiSO4 supported on Fe2O3-promoted ZrO2 catalysts were prepared by the impregnation method. Fe2O3-promoted ZrO2 was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt.%, indicating good dispersion of nickel sulfate on the surface of Fe2O3–ZrO2. The addition of nickel sulfate (or Fe2O3) to ZrO2 shifted the phase transition of ZrO2 (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or Fe2O3) and ZrO2. 15-NiSO4/5-Fe2O3–ZrO2 containing 15 wt.% NiSO4 and 5 mol% Fe2O3, and calcined at 500 °C exhibited a maximum catalytic activity for ethylene dimerization. NiSO4/Fe2O3–ZrO2 catalysts was very effective for ethylene dimerization even at room temperature, but Fe2O3–ZrO2 without NiSO4 did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Fe2O3 up to 5 mol% enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between Fe2O3 and ZrO2 and due to consequent formation of Fe–O–Zr bond.  相似文献   

19.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

20.
In situ time-resolved FTIR spectroscopy was used to study the reaction mechanism of partial oxidation of methane to synthesis gas and the interaction of CH4/O2/He (2/1/45) gas mixture with adsorbed CO species over SiO2 and γ-Al2O3 supported Rh and Ru catalysts at 500–600°C. It was found that CO is the primary product for the reaction of CH4/O2/He (2/1/45) gas mixture over H2 reduced and working state Rh/SiO2 catalyst. Direct oxidation of methane is the main pathway of synthesis gas formation over Rh/SiO2 catalyst. CO2 is the primary product for the reaction of CH4/O2/He (2/1/45) gas mixture over Ru/γ-Al2O3 and Ru/SiO2 catalysts. The dominant reaction pathway of CO formation over Ru/γ-Al2O3 and Ru/SiO2 catalysts is via the reforming reactions of CH4 with CO2 and H2O. The effect of space velocity on the partial oxidation of methane over SiO2 and γ-Al2O3 supported Rh and Ru catalysts is consistent with the above mechanisms. It is also found that consecutive oxidation of surface CO species is an important pathway of CO2 formation during the partial oxidation of methane to synthesis gas over Rh/SiO2 and Ru/γ-Al2O3 catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号